Undergraduate Honors Thesis Projects
Date of Award
Spring 4-5-2015
Document Type
Honors Project
Degree Name
Physics-BS
Department
Physics
Advisor
Dr. Aaron Reinhard
First Committee Member
Aaron Reinhard
Second Committee Member
David Robertson
Third Committee Member
Wendy Sherman Heckler
Keywords
saturated absorption, spectroscopy, rubidium, hyperfine, splittings, physics
Subject Categories
Atomic, Molecular and Optical Physics | Optics | Physics
Abstract
The goal of this experiment was to measure the hyperfine energy splittings of the ground to first excited state transitions in rubidium using saturated absorption spectroscopy. Using this technique, we measured these transition energy spectra by taking the difference of two photodiode outputs due to multiple beams of a single laser scanned over a range of frequencies and shone through a cell of Rb vapor. When the laser frequency was resonant with an atomic transition, photons of those frequencies were absorbed, leaving a dip in intensity of the beam measured at the photodiode. One of the two laser beams had its excitations saturated by a more intense, counter-propagating pump beam from the same laser. The pump beam saturated the absorption of the velocity equal zero atoms that the counter-propagating probe beam could have also interacted with due to no Doppler shift. At these frequencies the probe beam experienced less absorption that was measured by a photodiode. The photodiode output was calibrated to the change in frequency of the scanned laser using a Fabry-Pérot interferometer. The output of this interferometer served as a reference for how the laser frequency changed. Final results for the 87Rb F=1 spectrum accounted for the largest error with a maximum of 12.2% deviation from accepted energy spacing values due in part to systematic error. Other spectra measurements were in better agreement, possessing error ranging from 2.1% to 10.1% and some agreeing with accepted values to within our uncertainty.
Recommended Citation
Graber, Benjamin D., "Measuring the Hyperfine Splittings of Lowest Energy Atomic Transitions in Rubidium" (2015). Undergraduate Honors Thesis Projects. 2.
https://digitalcommons.otterbein.edu/stu_honor/2