Chemistry Faculty Scholarship

Document Type

Article

Publication Date

6-1-2000

Publication Title

Inorganic Chemistry

Abstract

Macrocycles with unique properties provide new avenues for the design of novel catalysts and materials. Here, we report, for the first time, the synthesis and characterization of the dimethyl-substituted bisbenzimidazole ligand (Me2BBZ) and its manganese complex (Mn-Me2BBZ). The Me2BBZ ligand is similar to porphyrin and phthalocyanine macrocycles in terms of its cavity size and metal-binding mode, but owing to electronic and charge differences, it exhibits properties that make it distinct from its structural counterparts. For instance, the optical spectra of bisbenzimidazoles lack transitions in the 500-900 nm region. Perhaps the most significant feature of the Me2BBZ ligand, however, is its inherent nonplanarity. Geometric restraints within this nonplanar ligand give rise to two atropisomers, which, when separated, could have potential in chiral catalysis and recognition. In addition, here we show that this nonplanarity can help to promote unusual crystal-packing interactions. Within the structure of the Mn-Me2BBZ complex, intermolecular pi-stacking interactions of the phenyl and benzimidazole groups lead to the formation of a distinct two-dimensional "staircase" lattice comprised of alternating Mn-Me2BBZ atropisomers. The potential significance of this structural arrangement is revealed by temperature-dependent magnetic studies that indicate weak antiferromagnetic coupling between the metal ions in the crystal. Fine-tuning of these long-range electronic and magnetic interactions could be useful for the design of novel molecular materials.

First Page

2367

Last Page

2376

Volume

39

Issue

11

DOI

10.1021/ic991322a

Version

Publisher's Version

Peer Reviewed

1

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.