Gram-Negative Bacteria and Sepsis

Christine D. Ridge
Otterbein University, christine.ridge@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn
Part of the Bacteria Commons, Bacterial Infections and Mycoses Commons, and the Family Practice Nursing Commons

Recommended Citation
Ridge, Christine D., "Gram-Negative Bacteria and Sepsis" (2016). Master of Science in Nursing (MSN) Student Scholarship. 178.
https://digitalcommons.otterbein.edu/stu_msn/178

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Gram-Negative Bacteria and Sepsis

Christine Ridge, R.N, B.S.N
Otterbein University, Westerville, Ohio

Introduction

Today’s medical world encompasses an environment in which gram-negative bacteria that once were defeated with common antibiotics, have now become resistant. Gram-negative bacteria like Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter, and Acinetobacter are pathogens that are an emerging threat causing sepsis due to multidrug resistance (Pop-Vicas & Opal, 2014, p.189). The multidrug-resistance mechanisms of gram-negative bacteria coupled with a patient population commonly seen in hospital settings, that consist of immunocompromised adults due to advancing age, comorbidities (e.g. AIDS, history of transplants, diabetes, and chemotherapy), and immunotherapies, create an environment for advanced infection or sepsis to take place. Complications of multidrug-resistant gram-negative bacteria can cause infection and ultimately sepsis in the host. Sepsis is also a very deadly condition with high morbidity and mortality rates. Chong et al., (2015), estimated that there are also a very deadly condition with high morbidity and mortality rates.

Chong et al., (2015), estimated that there are also a very deadly condition with high morbidity and mortality rates due to the increasing threat causing sepsis due to multidrug resistance (Pop-Vicas & Opal, 2014, p.292). Today's medical world encompasses an environment in which the microorganism/infection must be identified (count greater than 12,000 cells/mL). Furthermore, the heart rate greater than 90/min, trauma and burns. SIRS can be defined as having two or more of the following symptoms: Body temperature higher than 100.4 degrees Fahrenheit or lower than 96.8 degrees Fahrenheit, heart rate greater than 90/min, hyperventilation evidenced by respiratory rate greater than 20/min or PC02 lower than 32 mm Hg, and white blood cell count greater than 12,000 cells/μl or lower than 4,000/μl. (Chong et al., 2015, p.112).

Signs and Symptoms

- Sepsis is defined as the manifestation of two or more signs of systemic inflammatory response syndrome (SIRS) criteria and a documented infection (Pallen, Strain, O’Connor, & Hasenauer, 2014, p.23).

- SIRS is a group of symptoms/responses within the patient that are activated by bacteria (gram-positive and gram-negative), viruses, fungi, and non-infectious agents like trauma and burns. SIRS can be defined as having two or more of the following symptoms: Body temperature higher than 100.4 degrees Fahrenheit or lower than 96.8 degrees Fahrenheit, heart rate greater than 90/min, hyperventilation evidenced by respiratory rate greater than 20/min or PC02 lower than 32 mm Hg, and white blood cell count greater than 12,000 cells/μl or lower than 4,000/μl. (Chong et al., 2015, p.112).

- In addition to meeting two or more symptoms of SIRS, the identification of a causative or suspected microorganism/infection must be identified (Sagy, 2011, p.260).

Underlying Pathophysiology

- Gram-negative bacteria contain an assortment of mechanisms that enable them to evade the hosts immune system and become resistant to multiple antibiotics resulting in sepsis in the host.

- Mechanism of evasion include: Production of extended-beta-lactamases (ESBL) (this enzyme inactivates a variety of antibiotics i.e penicillin, cephalosporins, and aztreonam), modification of drug targets, and production of the endotoxin Lipopolysaccharide (LPS) which causes the release of pro-inflammatory mediators like macrophages, cytokines, leukotrienes, and chemokines in the patient resulting in local inflammation vasodilation, increased capillary permeability, clot formation and the pathogenesis of sepsis (Chong et al., 2015, p.114).

- In a septic host this response is exaggerated and adversely affects the patient. The increased capillary permeability results in fluid shift from the intravascular space to the interstitial tissues resulting in hypotension inadequate tissue perfusion, lactic acidosis, systemic vasodilation, and cellular hypoxia (Dunkley & McLeod, 2015).

- The host innate immune system continues its pro-inflammatory response by activating the complement system and clotted cascade.

- In summation, the pathogenesis of sepsis can be broken down into three mechanisms. Mechanism 1: The pro-inflammatory response, mechanism 2: Failure of the compensatory anti-inflammatory response (CARPS), and mechanism 3: Immunoparalysis which is the result of inflammation overpowering the patient’s immune system paralyzing it, leading to the failure of the immune system to neutralize pathogens (Sagy et al., 2013, p.261).

Significance of Pathophysiology

- Understanding the pathophysiology of gram-negative bacteria and sepsis is imperative to successfully treat and reduce the risk of mortality of the patient.

- Understanding the body's response to severe infection causing sepsis has led to the development of sepsis treatment bundles. Luet al., 2015, defines sepsis treatment bundles as a group of evidence-based interventions that provide greater benefit for the patient when administered together as compared with any single intervention (p.1045).

- The interventions applied in the sepsis treatment bundles are directed towards the pathophysiology of sepsis and the course the pathogen takes in the patient’s body (i.e reversing hypotension, glucose control to minimize optimal environment for pathogen, and broad spectrum antibiotics due to pending blood culture results).

Conclusion

- The Nurse Practitioners understanding of the pathophysiology of sepsis and gram-negative bacteria is imperative to successfully treat the patient and reduce mortality.

- With this high level of knowledge and understanding, efforts to deliver combination therapy antibiotics and resuscitation earlier has led to new approaches to sepsis that have shown success (Wunderink & Walkey, 2014, p.28).

- A practitioner’s knowledge of the course of sepsis and gram-negative bacteria drug resistance allows for rapid assessment and can lead to practice changes to antibiotic therapy and sepsis bundles.

Implications for Nursing

- Sepsis treatment bundles require that blood cultures are drawn to determine the source of infection. However, results from the cultures take up to three days to grow and result. A nurse practitioner’s knowledge of the high probability of a gram-negative infection (Pop-Vicas & Opal, 2014, p.292).

- With the prevalence of gram-negative bacteria related sepsis and multi-drug resistance, combination broad spectrum antibiotic therapy proves to be beneficial.

- Once blood culture results are obtained the combination antibiotic treatment can be de-escalated or limited to those that are responsive to (Pop-Vicas & Opal, 2014, p.292).

References

doi:10.1016/j.mayocp.2013.10.001


doi:10.1016/j.ajem.2015.04.030


doi:10.1177/0128382413497100

Wunderink, R., & Walkey, A. (2014). Pulmonary Infections: Journal Of Respiratory And Critical Care Medicine, 8, 1-16.