Malignant Hyperthermia

Taylor M. Morriss
Otterbein University, taylor.morriss@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Diseases Commons, and the Nursing Commons

Recommended Citation
https://digitalcommons.otterbein.edu/stu_msn/203

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Malignant Hyperthermia

Taylor Morrise, BSN, RN, CCRN
Masters of Science in Nursing Program,
Otterbein University
Westerville, OH

Introduction

Complications related to the anesthetic process are multifaceted and abundant. As a future nurse anesthesia student, the understanding pathophysiology, diagnosis, and treatment of anesthesia-related complications are of particular interest. One such anesthesia-induced life-threatening metabolic process involves the hypermetabolism of skeletal muscle. This pharmacogenetic process, known as malignant hyperthermia (MH), has a variable incidence rate ranging from 1:10,000 to 1:250,000 anesthetic cases. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals (Rosenberg, Pollock, Schiemann, Bulger, & Stowell, 2015, p. 1). “Malignant hyperthermia (MH) is a rare, but life-threatening, autosomal-dominant inherited disorder that must be learned and prevented in all individuals following exposure to triggering agents, such as volatile anesthetics or depolarizing muscle relaxants” (Schneiderbanger, Johannsen, Roewer, & Schuster, 2014, p. 359).

Significance of Pathophysiology

According to Dirksen et al. (2013), the MH response spurs a cascade of reactions, including increased sympathetic activity, increased production of carbon dioxide, heat from rapid use of adenosine triphosphate (ATP), increased oxygen consumption, excess lactate production, and cellular damage and destruction. The cellular membrane disruption then leads to changes in MH muscle contractures, including potassium, phosphate, magnesium, and myoglobin leakage into the extracellular fluid, causing a rise in serum levels (Dirksen et al., 2014). Complications related to the progression of these cellular alterations include: skeletal muscle damage, hyperthermia, renal failure, cardiac arrest, and possible death (Dirksen et al., 2013).

Underlying Pathophysiology

The pathophysiological process initiated by these pharmacologic insults is characterized by a disruption in the regulation of calcium within muscle cells. This buildup of intracellular calcium results in the initiation of an intense hypermetabolic reaction stimulating widespread muscle contraction (McCance & Heather, 2014, p. 501). This buildup of intracellular calcium is a result of “uncontrolled release of calcium caused by mutations in the ryanodine receptor subtype 1 (RYR1)” (Schuster, Johannsen, Schneiderbanger, & Roewer, 2013). This gene encodes an ion channel in the skeletal muscle cell through which calcium flows. “In the presence of an abnormal RYR1 gene in MH-susceptible individuals, a triggering agent such as halothane, isoflurane, sevoflurane, desflurane, or enflurane, either alone or in combination with the depolarizing muscle relaxant succinylcholine, initiates uncontrolled calcium release. This sets off the classic actin-myosin troponin interaction, shortening of muscle fibers, and consequent muscle contraction. The uncontrolled release of free calcium in intracellular calcium causes a sustained state of muscle contraction, leading to the hypermetabolic MH response” (Dirksen, Van Wicklin, Mashman, Neiderer, & Merritt, 2013, p. 331).

Implications for Nursing Care

“Many clinicians are unprepared to manage an MH crisis in the perioperative setting because it requires the use of low-dose, high-frequency, high-dose volatile anesthetics and neuromuscular blockade” (Cain, Riess, Gettrust, & Novalja, 2014, p. 301). Nurses should familiarize themselves with the signs and symptoms of MH, and be ready to implement institution treatment plan in the event of this complication. The widely accepted treatment for MH is to first remove the triggering anesthetic agent when an episode of MH is expected (Cain et al., 2014, p. 302). Dantrolene is a commonly used medication in the treatment of MH, which directly interferes with skeletal muscle contractions by decreasing the level of calcium in the muscle cells. Dantrolene does not block neuromuscular transmission, but rather potentiates nondepolarizing neuromuscular blockade (Brandom, & Riazi, 2015, p. 17). Active cooling in patients suffering from a MH crisis is paramount, with ice being the most widely used surface coolant. The patient’s core temperature should be lower than 39 degrees Celsius (Cain et al., 2014, p. 302).

Signs & Symptoms

“Almost all patients who are MH susceptible have no phenotypic changes without anesthesia, it is impossible to diagnose susceptibility without either exposure to the ‘trigger’ anesthetics or by specific diagnostic testing” (Rosenberg et al., 2015, p. 2). This reinforces the importance of educating anesthesia providers, and nurses alike on the signs and symptoms of this pharmacogenetic process.

"Characteristic clinical signs of MH during general anesthesia include hyperventilation, hyperpnea, hypercapnia, hyperthermia, tachycardia, hyperglycemia, acidosis, hyperkalemia and hyperthermia” (Schuster et al., 2013, p. 1). The "malignant hyperthermia clinical grading scale" bases the level of severity of MH crisis on six indicators: rigidity, muscle breakdown, respiratory acidosis, temperature increase, cardiovascular collapse, and other indicators of metabolic derangement not part of a single process (Heytens, Heiderich, & Scholtes, 2014, p. 506). “An increase in end-tidal carbon dioxide despite increased minute ventilation provides an early diagnostic clue” (Rosenberg et al., 2015, p. 1).

References

