Summer 2015

Clostridium difficile

Kristen Johnson

Otterbein University, kirsten.johnson@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Bacterial Infections and Mycoses Commons, Medical Pathology Commons, and the Nursing Commons

Recommended Citation

https://digitalcommons.otterbein.edu/stu_msn/107

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Introduction
Clostridium difficile (CD) is an infectious disease that has a direct impact on our healthcare resources. "Clostridium difficile, an anaerobic, spore-forming, toxin-producing, gram-positive bacillus, has become the leading cause of healthcare-associated infectious diarrhea." [Walters & Zuckerbraun, 2014, p. 329]. I chose this topic because CD is a hypervirulent organism that is not only affecting hospitalized patients but is now emerging as a community-acquired infection. Healthcare treatments and tests are on the rise due to persistent and recurrent CD infections. Understanding the pathogenesis, risk factors, diagnostic testing, and management strategies is imperative in reducing the spread of CD infections (Koike & Atlas, 2010).

Physiological Processes
Underlying Pathophysiology
Clostridium difficile (CD) is a spore-forming microorganism that releases toxins when in an anaerobic environment. The spore form allows the bacteria to remain dormant until the appropriate conditions cause the bacteria to emerge. The CD spore, after germination, is resistant to gastric acid and can be passed into the intestines, where conditions are favorable. The toxins then penetrate and release two exotoxins, A and B, that contain properties of enterotoxins and cytotoxins. These toxins can open tight junctions between cells in the intestines that end with increased vascular permeability and hemorrhaging (Frazer & Sneathwick, 2015). The toxins also produce tumor necrosis factor alpha and proinflammatory interleukins that cause an inflammatory response that leads to the development of pseudomembranes. Toxins A and B cause tissue damage in the gastrointestinal tract which results in diarrhea. CD is able to colonize in the gastrointestinal tract following a change in normal flora. The change in normal flora is typically caused by antibiotic use. Antibiotics kill the body's normal flora in the intestines providing more nutrient and space for the remaining infectious microorganism like CD.

Significance of Pathophysiology
The significance of the pathophysiology of CD is its highly virulent factors. The spore form is what makes this organism resistant and highly transmissible. Healthcare workers pose the greatest risk of transmission from direct or indirect exposure to a patient or their patient's environment. Understanding CD, its transmission, and its infectious process will allow for adequate treatment. According to Juneau et al. (2015), "approximately 20% of patients with CDI develop a recurrent episode of C. difficile colitis, typically within 3-10 days after completing antibiotics" (p. 4). The duration of CD recurrence is not currently well understood. It could be related to inadequate eradication following the antibiotic regimen or it may be related to inadequate production of antibodies against the bacterial toxins (Juneau et al., 2015). More research is needed to identify recurrence rates to better compare community-acquired versus hospital-acquired CD infections.

Implications for Nursing Care
1. Early identification and diagnosis
2. Implementation of contact isolation precautions (gown and gloves are important to prevent spore transmission)
3. Private room (separate stethoscopes and blood pressure cuffs)
4. Proper cleaning and caring of environmental factors to stop transmission
5. CAUTIOUS hand hygiene with soap and water is necessary to adequately remove spores and prevent transmission (Alcohol-based hand gels are ineffective in removing spores)
6. Focal antimicrobial stewardship programs
7. Earlier surgical consultations and management may improve outcomes in patients with a complicated disease
8. A multidisciplinary approach with the support of hospital leaders is needed to reduce the morbidity, mortality, and financial burden for patients and the health care system
9. Avoid unnecessary use of antibiotics

Signs & Symptoms
• Abdominal pain (cramps)
• Fever
• Loss of appetite
• Nausea
• Diarrhea
• Nausea
• Blood in stool

Risk Factors
• Exposure to organism
• Prolonged hospitalization
• Older age
• Comorbidities (inflammatory bowel disease, gastrointestinal surgery, cancer, chemotherapy treatment, and organ transplant)
• Immunosuppressive patients
• Severity of illness
• Malnutrition
• Male sex
• Recent or frequent use of broad-spectrum antibiotics
• Use of proton pump inhibitors may also be a risk factor

References
Goldberg, E. J., Bhalodia, B., Varghese, B., & ... (2015). Fecal Microbiota Transplant to Treat Clostridium difficile Infection/Default.htm#s0020

Additional Sources

Conclusion
There are many unknown factors about CD infections that need further investigation. More research is needed to further evaluate its epidemiology, risk factors, diagnostic measures, control measures, and treatment options (Juneau et al., 2015). Prevention is key in controlling the spread of this hospital-acquired or community-acquired infection. Nurses play a critical role in the prevention of CD infections through early detection, patient education, implementing contact precautions, and assisting with environmental cleanliness and surveillance.