Accurate Intervention in Visceral Aneurysms

Megan Hoying
Otterbein University, megan.hoying@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn
Part of the Cardiovascular Diseases Commons, Medical Pathology Commons, and the Nursing Commons

Recommended Citation
Hoying, Megan, "Accurate Intervention in Visceral Aneurysms" (2014). Master of Science in Nursing (MSN) Student Scholarship. 42. https://digitalcommons.otterbein.edu/stu_msn/42

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Introduction

A 30 year old male presented to the ED with a one week history of fever, abdominal pain, and poor PO intake due to nausea and emesis. He was given a GI consult and sent home for a presumed diagnosis of gastroenteritis. After having persistent pain the patient returned to the ER the following day and was admitted for further testing. The patient died 3 days later. This is an interesting case presentation, and was in no way straightforward.

Presentation of case

Further testing was initiated and a CT scan showed 6 x 5 x 2 cm. vascular lesions with arterial inflow. He was diagnosed with hepatic arterial aneurysm secondary to an arteriovenous malformation (AVM). Peripheral Vascular, Interventional Radiology, and Transplant Surgery teams were consulted on the case. Transplant surgery determined there was nothing they could do for the patient, because the patient had an elevated WBC, a chronic viral fever which made him not a candidate for a Liver Transplant. Looking back, the correct treatment would have been to resect the aneurysm was much too large for a transplant. Interventional Radiology attempted to embolize the hepatic artery aneurysm. Complications arose during the procedure where the device used to embolize the aneurysm migrated into the aneurysm sac. Due to the large size of the aneurysm and the surrounding vessels, a standard covered stent was not possible. Visceral arteries were typically used to treat visceral aneurysms were unfortunately contraindicated. After much discussion the team felt that there was a high risk of the aneurysm rupturing if they continued and decided to stop the procedure until a new plan had been discussed. While discussing a new plan, the aneurysm ruptured and after unsuccessful attempts to stabilize, the patient expired.

Signs & Symptoms

- Abdominal pain
- Unrelieved nausea & vomiting.
- Fever
- Laboratory tests:
 - Increase in Total Bilirubin (3.9 mg/dL)
 - Increase in White Blood Cell Count (139K/uL)

Underlying Pathophysiology

Aneurysms are the result of weakening and thinning of the artery wall. When a portion of the arterial wall stretches to grow in more than 50% of the original diameter, this is called an aneurysm (Sachse, 2010, p. 291). Visceral artery aneurysms (VAAs) are relatively rare pathological conditions. Most VAAs are asymptomatic and are often diagnosed incidentally, however they are associated with a high incidence of rupture (Bowers & Wang, 2014, p.14). The prevalence of VAAs is 0.3-0.5%, and only a few may cause abdominal pain, which indicates a higher risk of impending rupture (Berardi, 2005, p. 197). Surgery has always been considered to be the treatment of choice for VAAs. However, endovascular management has become a valid therapeutic option in recent years, especially in patients who are not suitable for open repair (Baldi, Antonetti, Pedrizzetti, Ferri, Lieto, Peppo, & Grossi, 2005, p. 1276). Risk factors associated with visceral aneurysms include aging, smoking, hypertension, hypercholesterolemia, hyperlipidemia, male gender, and family history. Other causes of visceral aneurysms include inherited or developmental diseases, infections, vasculitis, and trauma (Fournier & Jaffé, 2012, p. 27).

Significance of Pathophysiology

According to literature, embolization of the artery is the accepted treatment of choice for visceral aneurysms (Ferrero, Gaggino, Ferri, Vesora, Benetti, Piasca, Cumbi, Larmeggiani, & Nesi, 2010, p. 31-32). Although, relating to this specific case, literature states that open surgery is recommended when the aneurysm diameter is greater than 5.5 cm and also in a symptomatic aneurysm of any size (Sellersdies & Farhan, 2010, p. 843). Large aneurysms are contraindicated for endovascular repair because the risk of coil migration with occlusion of vital branches is high (Balden, et al., 2010, p. 1285). Since VAAs are of such low incidence, it would be easy to overlook this disease. Despite their low incidence, when encountered, VAAs pose a significant risk. Therefore it could be a deadly mistake to assume a different diagnosis. When an AV is confronted with a patient complaining of abdominal pain, the provider must first rule out catastrophic causes of pain, such as dissecting aortic aneurysm (Fermade, 2010). This was missed on the patient’s first visit to the ER. A full set of labs may have prompted further investigation into the reasons for the abdominal pain (elevated bilirubin & elevated WBC).

Implications for Nursing Care

Relative contraindications to interventional radiology treatment include an anatomic issue such as occlusion of the feeding vessels, limited access, and challenging local vascular anatomy which may make trans-catheter treatment too difficult to perform. Although classically treated by open surgery, modern treatment strategies generally place interventional radiology techniques at the top of the treatment algorithm. Therefore, vascular interventionists may become familiar with the indications for the treatment of VAA, become experienced in the different techniques, and know when to recommend treatment of VAA by interventional radiology techniques when or when to advocate open surgical repair (Bell, Markose, & Morgan, 2012, p. 234). In this particular case, the aneurysm was much too large to be stabilized interventionaly. Looking back, the correct treatment would have been to resect the affected portion of the liver to give the patient time until he was a candidate for Liver Transplant.

References
