Pathophysiology, Incidence and Implications in Intraductal Papillary Mucinous Neoplasia of the Pancreas

Ericka Haverick
Otterbein University, ericka.haverick@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Medical Pathology Commons, Neoplasms Commons, and the Nursing Commons

Recommended Citation

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Nursing Student Class Projects (Formerly MSN) by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact jwu@otterbein.edu.
Pathophysiology of IPMN

Introduction
Intraductal papillary mucinous neoplasms (IPMN) are uncommon tumors arising from the main pancreatic duct. These tumors are characterized by the presence of multiple cysts. The overall incidence of invasive intraductal papillary mucinous neoplasms (IPMNs) in the population has been reported to be 20-40% (Mohri et al., 2011). Due to their malignant potential, these tumors are associated with a high risk of cancer. Hypermethylation of tumor suppressor genes has been seen in patients with IPMN. Peutz–Jeghers syndrome is a genetic disorder associated with an increased risk of IPMN and pancreatic cancer.

Pathophysiology of IPMN

PMNs are classified into type 1 and type 2 based on their clinical presentation. Type 1 IPMNs are typically asymptomatic and present as incidental findings during routine imaging. Type 2 IPMNs, on the other hand, are often symptomatic and present with signs and symptoms of malignancy such as weight loss, pain, or jaundice. The treatment for IPMN is highly individualized based on the presence or absence of malignant cells and the patient's clinical status.

Intrapancreatic cysts are the main finding in type 1 IPMNs, while type 2 IPMNs may also have extrapancreatic cysts. Surgery is the primary treatment for IPMN, and the choice of surgical procedure depends on the extent and aggressiveness of the tumor.

Possible Molecular Abnormalities in IPMN

- K-Ras: Necessary for normal tissue signaling. A K-Ras gene that leads to GTP and nucleoside synthesis in type 1 IPMNs is present in up to 65% of IPMNs. Inactivation of K-Ras in type 2 IPMN is associated with a higher risk of malignancy.
- SMAD4: Type 1 intrapancreatic cysts that can be transmitted by surgical cyst resection.
- SMAD4: Type 2 intrapancreatic cysts that can be transmitted by surgical cyst resection.

Conclusion
IPMN is a rare and heterogeneous condition. The diagnosis and management of IPMN require a multidisciplinary approach involving gastroenterologists, radiologists, surgeons, and pathologists. Early detection and prompt treatment can significantly improve patient outcomes. Further research is needed to better understand the underlying molecular mechanisms of IPMN and to develop more effective treatment strategies.

References

Additional Sources

Case Presentation
The patient is a 51-year-old female who was noted to have multiple liver lesions on a scan that was performed for the time of imaging with a splenic mass and liver cysts as well as a liver cyst. The liver cysts were 2.5 cm in diameter. She was referred for further workup. A full workup was performed, including liver function tests, coagulation studies, and liver ultrasound, which showed a lobulated mass in the left lobe of the liver. needle biopsy of the liver lesion revealed a well-differentiated adenocarcinoma. The patient elected to undergo a liver resection, which was performed with no complications. The patient was doing well at the time of this report.

Immunohistochemistry

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue sections using standard immunohistochemical methods. The sections were stained with antibodies to cytokeratin (clone AE1/AE3, DAKO, Glostrup, Denmark) and MUC1 (clone 18D2, DAKO). The tissue sections were incubated with the primary antibodies for 1 hour at room temperature, followed by washes and incubation with the appropriate secondary antibodies. The sections were counterstained with hematoxylin.

The results showed that the liver lesion was positive for cytokeratin and MUC1. The immunohistochemical results are consistent with the diagnosis of adenocarcinoma. The patient was referred to medical oncology for further evaluation and management.

Further workup was performed, including CT scans of the chest, abdomen, and pelvis, which showed no evidence of metastatic disease. The patient was referred to medical oncology for further evaluation and management.

Discerning the cystic structure in the pancreatic duct, giving a ‘fish eye’ appearance. (Grutzmann et al., 2011)

MRI: The patient was referred to medical oncology and chemotherapy was recommended.

References
Mohri, D., Asaoka, Y., Ijichi, H., et al. (2011). Long-term surveillance for these liver lesions over 40% (Mohri et al., 2011)."}

Case Presentation
The patient is a 51-year-old female who was noted to have multiple liver lesions on a scan that was performed for the time of imaging with a splenic mass and liver cysts as well as a liver cyst. The liver cysts were 2.5 cm in diameter. She was referred for further workup. A full workup was performed, including liver function tests, coagulation studies, and liver ultrasound, which showed a lobulated mass in the left lobe of the liver. needle biopsy of the liver lesion revealed a well-differentiated adenocarcinoma. The patient elected to undergo a liver resection, which was performed with no complications. The patient was doing well at the time of this report.

Immunohistochemistry

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue sections using standard immunohistochemical methods. The sections were stained with antibodies to cytokeratin (clone AE1/AE3, DAKO, Glostrup, Denmark) and MUC1 (clone 18D2, DAKO). The tissue sections were incubated with the primary antibodies for 1 hour at room temperature, followed by washes and incubation with the appropriate secondary antibodies. The sections were counterstained with hematoxylin.

The results showed that the liver lesion was positive for cytokeratin and MUC1. The immunohistochemical results are consistent with the diagnosis of adenocarcinoma. The patient was referred to medical oncology for further evaluation and management.

Further workup was performed, including CT scans of the chest, abdomen, and pelvis, which showed no evidence of metastatic disease. The patient was referred to medical oncology for further evaluation and management.

Discerning the cystic structure in the pancreatic duct, giving a ‘fish eye’ appearance. (Grutzmann et al., 2011)