Parkinson's Disease and Anesthesia

Anthony Brusadin
brusadin1@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
Brusadin, Anthony, "Parkinson's Disease and Anesthesia" (2021). Nursing Student Class Projects (Formerly MSN). 474.
https://digitalcommons.otterbein.edu/stu_msn/474

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Nursing Student Class Projects (Formerly MSN) by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact digitalcommons07@otterbein.edu.
Parkinson’s Disease
Anthony Brusadin RN, BSN, CCRN
Otterbein University, Westerville, Ohio

What is the Topic
- Parkinson’s Disease (PD) is a progressive neurodegenerative brain disorder (Lotankar et al, 2017)

Why Parkinson’s
- PD is the fast-growing neurological disorder, it is estimated that the number of PD case will double from about 7 million in 2015 to about 13 million in 2040 (Jankovic & Tan, 2020)
- Neurological disorders Are the leading source of disability (Ismail & Bitar, 2020)
- Growing elderly population (Simon et al, 2019)

Signs and Symptoms
- PD manifests as tremors, muscle rigidity, bradykinesia, impaired posture, impaired balance, speech changes, impaired fine motor problems
- PD is a chronic progressive neurodegenerative disorder characterized by early prominent death of dopamine neurons in the substantia nigra pars compacta and widespread presence of alpha synuclein in intracellular structures (Radhakrishnan & Goyal, 2018)
- Parkinson’s disease is a movement disorder that affects the basal ganglia, causing symptoms such as tremors, stiffness, and slow movement (Jankovic & Tan, 2020)
- PD is represented by the presence of neuronal inclusions termed Lewy Bodies, mainly composed of aggregates of misfolded alpha synuclein which causes cytoplasmic loss through lipid membrane permeabilization, mitochondrial damage and oxidative stress (Vittorio et al, 2020)
- Several risk factors have been implicated including pesticide and heavy metal exposure, rural living, occupational exposure, traumatic head injury, history of melanoma, consumption of dairy products, type 2 diabetes mellitus (reduced using anti-diabetic drugs), among many others (Jankovic & Tan, 2020)
- Several life-style factors have been associated with reduced risk of developing PD. The most consistent association is a reduced risk of PD in PD in cigarette smokers, caffeine, and exercise (Simón et al, 2020)
- In recent years it has become evident that there is also a genetic contribution to PD and several mutations have been identified (UNCA, Parkinson, PINXL, DCT, LRRK2 and GBA) although in most world regions only a minority cases are explained by genetics (Lotankar et al, 2017)
- Parkinson’s patients have reduced dopamine levels in the synaptic cleft between neurons affecting the patient’s movement (Radhakrishnan & Goyal, 2018)

Underlying pathophysiology
- PD is a chronic progressive neurodegenerative disorder characterized by early prominent death of dopamine neurons in the substantia nigra pars compacta and widespread presence of alpha synuclein in intracellular structures (Radhakrishnan & Goyal, 2018)
- PD is represented by the presence of neuronal inclusions termed Lewy Bodies, mainly composed of aggregates of misfolded alpha synuclein which causes cytoplasmic loss through lipid membrane permeabilization, mitochondrial damage and oxidative stress (Vittorio et al, 2020)
- Several risk factors have been implicated including pesticide and heavy metal exposure, rural living, agricultural occupations, traumatic head injury, history of melanoma, consumption of dairy products, type 2 diabetes mellitus (reduced using anti-diabetic drugs), among many others (Jankovic & Tan, 2020)
- Several life-style factors have been associated with reduced risk of developing PD. The most consistent association is a reduced risk of PD in PD in cigarette smokers, caffeine, and exercise (Simón et al, 2020)
- In recent years it has become evident that there is also a genetic contribution to PD and several mutations have been identified (UNCA, Parkinson, PINXL, DCT, LRRK2 and GBA) although in most world regions only a minority cases are explained by genetics (Lotankar et al, 2017)

Significance of Pathophysiology
- Dopamine deficiency in the basal ganglia leads to clinical Parkinsonian motor symptoms viz, bradykinesia, tremor, rigidity, and later postural instability (Radhakrishnan & Goyal, 2018)
- While it is a rare condition, patients with Parkinson’s disease have a higher risk of falls than the general population (Kim et al, 2020)
- The pharmacological treatments for PD have their efficacy as the disease progresses and are unable to block or reduce the neurodegenerative process (Vittorio et al, 2020)
- The pathogenesis of PD involves neuronal death, which is affected by both innate and adaptive immunity. They have shown that the levels of pro-inflammatory cytokines are elevated in PD patients (Hwang et al, 2020)
- Patients with PD also have higher rates of postoperative mortality, which can be related to postural instability places these patients at greater risk of falling, whilst dysphagia increases susceptibility to aspiration pneumonia (Roberts & Lewis, 2018)

Treatment
- To date, the available therapies for the treatment of PD are addressed to reduce the motor symptoms and include the administration of drugs able to restore the level of dopamine (Vittorio et al, 2020)
- Levodopa, the most effective drug in the treatment of PD, is almost always combined with carbidopa or benserazide, aromatic acid deacetylase inhibitors that prevent its peripheral metabolism and markedly reduce the risk of nausea (Jankovic & Tan, 2020)
- Dopamine receptor agonists stimulate dopamine receptors when introduced early during PD treatment, they delay levodopa-related complications such as motor fluctuations and dyskinesias (Jankovic & Tan, 2020)
- Subthalamic nucleus deep brain stimulation is an effective treatment for patients with Parkinson’s disease with motor fluctuations. Best clinical outcomes are critically dependent on accurate placement of the stimulating electrode (Tsai et al, 2020)
- General anesthesia does not impair electrode placement accuracy or affect long-term clinical outcome (Tsai et al, 2020)
- There is currently no cure for PD (Lotankar et al, 2017)
- New research shows that inhibition of a syn aggregation by small molecules proved to be a valid approach for the development of new therapeutics for the treatment of PD (Vittorio et al, 2020)

Implications of Nursing Care
- Recommendations that evaluation of respiratory function should be performed carefully prior to surgery and antiparkinsonian drugs should be continued (Kim et al, 2020)
- Recommended anesthetist to prepare for life-threatening upper airway obstruction during the perioperative period in patients with PD (Kim et al, 2020)
- Several retrospective studies have found an association between anesthetic exposure during infancy and adverse neurodevelopmental outcomes (Roberts & Lewis, 2018)
- Carefully reviewing a patient’s medication regimen is still understood the importance of adhering to specific dosing intervals (Roberts & Lewis, 2018)

Conclusion
- PD is a complex disorder, with both environmental and genetic factors converging on a common set of pathways (Simón et al, 2019)
- While studies show a connection to anesthesia and adverse neurodevelopmental outcomes, there is not enough data to draw a correlation between anesthesiologists and PD (Roberts & Lewis, 2018)
- The inhibition of a syn aggregation has emerged as promising new therapeutic strategy for the treatment of PD (Vittorio et al, 2020)
- Current PD research demands a search for unique biomarkers that can be useful to discriminate between PD and other diseases with higher sensitivity and specificity (Lotankar et al, 2017)

References
 https://doi.org/10.1186/s12871-020-01112-9
 https://doi.org/10.4103/1658-3058.41579
 https://doi.org/10.1080/20014099.2020.1856999

Figure 2. Subthalamic nucleus deep brain stimulation is surgically implanted into the patient’s brain to help stimulate the brain an reduce tremors (Tsai et al, 2020). Image credit: Smith 2021

Healthy Patient

Healthy Patient

Image 1. Parkinson’s patients have reduced dopamine levels in the synaptic cleft between neurons affecting the patient’s movement (Radhakrishnan & Goyal, 2018). Image credit: Parkinson Association of the Carolinas

Figure 3. Parkinson’s patients have reduced dopamine levels in the synaptic cleft between neurons affecting the patient’s movement (Radhakrishnan & Goyal, 2018). Image credit: Parkinson Association of the Carolinas

Figure 4. Parkinson’s patients have reduced dopamine levels in the synaptic cleft between neurons affecting the patient’s movement (Radhakrishnan & Goyal, 2018). Image credit: Parkinson Association of the Carolinas

Figure 5. Parkinson’s patients have reduced dopamine levels in the synaptic cleft between neurons affecting the patient’s movement (Radhakrishnan & Goyal, 2018). Image credit: Parkinson Association of the Carolinas