Malignant Hyperthermia

Alexandra McGuire
mcguire3@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
https://digitalcommons.otterbein.edu/stu_msn/360

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Nursing Student Class Projects (Formerly MSN) by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact Whybrew1@otterbein.edu.
Excitation-contraction Coupling Process

1. Acetylcholine binds to postjunctional nicotinic acetylcholine receptors (nAChR) located on the sarcoplasmic reticulum (sarcoplasmic reticulum (SR)) (Mullins, 2018, p. 583).
2. RyR1 gene encodes the channel that releases Ca$^{2+}$ from the SR.
3. Ca$^{2+}$ influx occurs through the transverse tubule (t-tubule) system (Mullins, 2018, p. 583).
4. Cardiac muscle is excited with the depolarization of the sarcolemma and the action potential travels down the transverse tubule (t-tubule) system, which closes RyR1 channels (Mullins, 2018, p. 583).
5. Voltage-gated calcium (Ca$^{2+}$) currents in the t-tubules undergo a conformational change due to depolarization. Ca$^{2+}$ channels open the transverse tubule (t-tubule) system (Mullins, 2018, p. 583).
6. Increased intracellular Ca$^{2+}$ causes abnormal skeletal muscle contraction, initiating a self-sustaining contracture (Rosenberg et al., 2015, p. 4).
7. Muscle contraction increases oxygen consumption and intracellular Ca$^{2+}$ content.
8. Calcium influx continues, causing the release of additional intracellular Ca$^{2+}$ stores.
9. An influx of extracellular Ca$^{2+}$ through Ca$^{2+}$ channels and intracellular release of Ca$^{2+}$ from the sarcoplasmic reticulum (SR) (Mullins, 2018, p. 583).
10. RyR1 gene encodes the channel that releases Ca$^{2+}$ from the SR.
11. Calcium release increases the affinity of the T-tubule volume sensor.

Signs and Symptoms

- **Early Symptoms**
 - Tachycardia
 - Hyperpyrexia
 - Hypertension
 - Cardiac dysrhythmias
 - Tachypnea

- **Late Symptoms**
 - Hyperthermia
 - Rhabdomyolysis
 - Acute respiratory distress syndrome (ARDS)
 - Coagulopathy
 - Death

Implications for Nursing Care

- **Preoperative Assessment**
 - Discontinue trigger agents
 - Preoperative assessment
 - Cooling measures

- **Intraoperative Monitoring**
 - Monitor for recrudescence (24 hours)
 - Increase oxygenation and hyperventilate
 - Monitor for signs of MH
 - Treat rhythm disturbances
 - Manage an MH crisis

- **Postoperative Management**
 - Discontinue trigger agents
 - Monitor for recrudescence (24 hours)
 - Manage pain
 - Maintain normal core temperature

References Cited

- Rosenberg et al., 2015, p. 1
- Rosenberg et al., 2015, p. 10
- Rosenberg et al., 2015, p. 20
- Rosenberg et al., 2015, p. 13

Current Research

- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- The role of magnesium in the prevention of MH (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)

Additional Sources

- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)
- Magnesium (Mg$^{2+}$) in MH treatment (Chao, Komer, & Lamont, 2017)