7-25-2018

Ischemia Reperfusion Injury and its Effect on the Myocardium

Anthony Mathenge
Otterbein University, anthonygwash@yahoo.com

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
https://digitalcommons.otterbein.edu/stu_msn/325

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Acute myocardial infarction is a leading cause of morbidity and mortality in the world. Reperfusion strategies are the current standard therapy for acute myocardial infarction (Neri, 2017).

Most clinicians assume that ischemic injury terminates with return of spontaneous circulation (ROSC). However, according to Ibáñez 2015, damage inflicted on the myocardium during acute myocardial infarction is the result of two processes: ischemia and subsequent reperfusion (Ibáñez, 2015).

1. Ischemia: the occlusion of blood flow to the tissue can be detrimental to the heart due to its high energy demand (Zhou, 2015).

2. Reperfusion injury: Reperfusion strategies may result in paradoxical cardiomyocyte dysfunction and worsen tissue damage (Neri, 2017).

Pathophysiology

Myocardial ischemia reperfusion injury occurs when restoration of blood to ischemic heart reduces cardiac function and causes acceleration of myocardial injury through (Zhou, 2018):

- Reactive oxygen species (ROS): small amounts of ROS offer cardio-protection. However, excessive production of ROS during reperfusion causes injury (Neri, 2017).
- Platelets: thrombocytes are equipped with NADPH oxidase, an enzyme located at a cell membrane catalyzing the formation of superoxide therefore releasing ROS. These ROS are able to induce a reperfusion injury (Selgmann, 2013).
- Inflammation: reperfusion triggers a complex inflammatory reaction accompanied by cytokine release and inflammatory leukocyte infiltration into the endangered myocardial region. This contributes to edema, phagocytosis, proteolysis, apoptosis, and collagen deposition (Jiaqi, 2016)
- Cellular Ca++ overload: during ischemia, acidosis from anaerobic glycolysis increases influx of Na+ through Na+/H+ exchange. ICf N+ accumulation is due to inhibition of Na+/K+ ATPase due to lack of ATP. Subsequent exchange of Na+ for Ca++ by reverse mode operation of sarcomemmal Na+/Ca++ exchanger induces ICf Ca++ overload. Upon reperfusion, the rapid normalization of pH and reenergization in the context of elevated cytosolic Ca++ induces oscillatory release and reuptake of Ca++ into the sarcoplasmic reticulum, causing excessive myofilibrar hypercontraction (Ibáñez, 2015).
- Edema: The high cytosolic concentrations of Na+ and Ca++ result in ICf edema when ECF osmolality is rapidly normalized by reperfusion (Ibáñez, 2015).
- Mitochondrial permeability transition pore (MPTP): a large mega channel that opens due to increased Ca++, inorganic phosphate, or ROS, all of which are present in reperfusion. Opening results in mitochondrial swelling and ultimately lead to rupture of the outer membrane. (Ibáñez, 2015).
- Generation of tissue edema following reperfusion can result in external compression of the microcirculation, reducing the perfusion capacity of the capillary network (Ibáñez, 2015). Microcirculation can disintegrate due to prior damage and leak circulating cells into interstitial space (Ibáñez, 2015).
- Hemorrhage: RBC release iron contributing to subsequent inflammatory reaction (Ibáñez, 2015)

Implications for Nursing Care

Pharmacological interventions to reduce reperfusion injury by:
- Cyclosporine-A: inhibiting the opening of the MPTP.
- Metoprolol: contrary to the classical theory of reduced myocardial oxygen consumption, the mechanism responsible for this infarct-limiting effect is on circulating neutrophils and platelets rather than cardiomyocytes.
- Glucagon like peptide-1 (GLP1) analogs: use of glucose to protect cardiomyocytes from energy depletion.
- ABC/MDR: Glycoprotein Ib/IIa inhibitors were developed as a continual challenge. European Heart Journal, 65(14), 1454-1471. doi:10.1016/j.ehj.2015.02.032

References

