Pathophysiology of Sepsis

Billie K. Newland
Otterbein University, kknappl22@hotmail.com

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
https://digitalcommons.otterbein.edu/stu_msn/315

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Pathophysiology of Sepsis

Billie Newland ADN, RN
Otterbein University, Westerville, Ohio

What is Sepsis?

- Sepsis is defined as an exaggerated host response to infection that is dysregulated, and leads to organ dysfunction (Tidswell, 2018).
- Sepsis is a medical emergency that requires prompt recognition and treatment.
- Sepsis leads to 1.6 million hospitalizations, and more than 250,000 deaths per year in the United States (Venkatesh et. al., 2018, p. 10).
- Sepsis survivors experience lasting morbidities related to the organ damage caused by sepsis.
- Sepsis is very expensive to treat, contributing to increasing healthcare costs.

Important Terms:

Systemic Inflammatory response syndrome (SIRS) – presence of two or more of the following criteria:
- Fever
- Hypothermia
- Tachycardia
- Tachypnea
- Leukocytosis
- Leukopenia
- Normal WBC with >10% immature cells

Sepsis – Systemic response to infection, clinically identified by the presence of SIRS criteria.
- Severe Sepsis – The dysfunction of at least one organ system.
- Septic Shock – Severe sepsis with persistent hypotension. (McCance & Huether, 2014, p. 1676)

Pathophysiology of Sepsis

- Host is infected by bacteria or fungi = Bacteremia
- Proinflammatory mediators are released = Activation of complement, coagulation, kinin, & basophils
- Anti-inflammatory mediators released = Complementary Response
- Proinflammatory & anti-inflammatory mediators respond to one another = Mixed antagonistic response syndrome
- Compensatory responses intensify causing hyperinflammation leading to Multiple Organ Dysfunction Syndrome (MODS)
- MODS is the result of hyperperfusion leading to tissue hypoxia & lactic acidosis. (McCance & Huether, 2014, p. 1677).

CLINICAL DIAGNOSIS: Early detection is the key to successful treatment! SIRS Criteria (see important terms) are used as a screening tool for sepsis, it is important to note that a patient may meet SIRS criteria related to a non-infectious source (trauma, burns, surgery). These patients are NOT septic. Diagnosis of sepsis requires the presence of a proven infection (Laszlo et al., 2015, p. 3).
- Complete history must be performed for any patients meeting SIRS criteria. This includes recent travel, infectious contacts, recent procedures, immunization record.
- Complete physical exam to assess possible source of infection.
- Possible sources include pneumonia, urinary tract infection, cellulitis and/or abscess, meningitis, etc.
- Diagnostic tests are completed to diagnose the source of infection as well as the extent of organ dysfunction.
- Urinalysis with micro
 - Chest X-ray
 - Lactic Acid to assess for lactic acidosis which results from hyperperfusion tissues.
 - Blood culture
 - Arterial Blood Gas (ABG) to respiratory status & assess acid/base disturbances
 - Blood tests: BMP, CBC, & Coagulation factors

Quality Improvement: SEP-1 Core Measure

- Created by Centers for Medicare & Medicaid Services (CMS) and Joint Commission (JC) to improve early recognition and treatment of sepsis.
- Similar to core measure programs to reduce complications relating to acute MI, venous thromboembolism, and stroke (Motzkus & Lilly, 2017, p. 955).

SEPSIS SYMPTOMS

Photograph credit: commons.wikimedia.org

Sepsis – “The hidden public health disaster” (Liu et. al., 2016)

Quality Improvement: SEP-1 Core Measure

- Created by Centers for Medicare & Medicaid Services (CMS) and Joint Commission (JC) to improve early recognition and treatment of sepsis.
- Similar to core measure programs to reduce complications relating to acute MI, venous thromboembolism, and stroke (Motzkus & Lilly, 2017, p. 955).

SEP-1 Bundles

Time	Severe Sepsis	Septic Shock
3-hour Bundle | 1. Initial Lactate measurement | 1. All severe sepsis bundle
2. Broad-Spectrum ATB administration | 2. 30 mL/kg bolus crystalloid fluid
3. Blood Cultures drawn prior to ATB
6-hour Bundle | 1. Repeat lactate measurement ONLY if first reading was elevated | 1. Vasopressors if hypotension persists after fluid bolus
2. If hypotension persists after fluid or initial lactate >4 mmol/L
 a. Focused exam to assess: vital signs, cardiodiopulmonary status, cap refill, peripheral pulses, and skin
 b. Any two of the following: Central Venous Pressure Central Venous Oxygen bedside cardiovasular ultrasonography Passive leg raise or fluid challenge

CDC’s Surviving Sepsis Campaign

- The CDC recommends use of a “1-hour Bundle” in order to initiate treatment quicker. Interventions should be completed within one hour of arrival to ED:
 - Lactate level with reflex if >2 mmol/L
 - Initiate 30mL/kg fluid bolus as soon as possible for hypotension and/or elevated lactate.
- Early and adequate fluid administration has decreased mortality related to sepsis. Even in patients with history of heart failure and/or chronic kidney disease (Liu et al., 2016),
- Obtain blood cultures
- Antibiotic Administration (Lieu et. al., 2018, p.998).

“Without adequate initial management, providing even the highest level of intensive care would be in vain” (Laszlo et al., 2015, p. 1).

References

https://doi.org/10.1155/2015/549398

https://doi.org/10.1164/rccm.201510-1886OC

https://doi.org/10.1016/j.annemergmed.2017.04.022

https://doi.org/10.1155/2015/549398

“Without adequate initial management, providing even the highest level of intensive care would be in vain” (Laszlo et al., 2015, p. 1).