7-24-2018

Underappreciation of Endothelial Glycocalyx

Morgan Potts
Otterbein University, m.potts@mail.com

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
Potts, Morgan, "Underappreciation of Endothelial Glycocalyx" (2018). Master of Science in Nursing (MSN) Student Scholarship. 301.
https://digitalcommons.otterbein.edu/stu_msn/301

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
Introduction

While most clinicians have a basic understanding of the human body's "pumps and pipes," many do not know that blood vessels contain a special protective layer called the endothelial glycocalyx. Its unique composition and function make it important to more than several pathophysiologic processes in the body.

When the endothelial glycocalyx is damaged, the luminal side of the endothelium is no longer protected and complications can occur. There are four main identifiable reasons that contribute to the degradation of the glycocalyx and surprisingly, all are very common among those who are critically ill.

This structure is worth discussing because it ultimately dictates the severity of hemodynamic compromise that can occur once the glycocalyx is damaged. By avoiding damage, the hope is that both morbidity and mortality can be reduced.

Pathophysiologic Process

Composition:

The endothelial glycocalyx is a slim, gel-like substance in the shape of thin, hair-like projections on the inside of the lumen wall in blood vessels (see figure 1).

It is primarily made up of glycoproteins and proteoglycans. Glycoproteins are proteins that have carbohydrate groups attached to a polypeptide chain while proteoglycans are proteins bonded to glycosaminoglycan groups. Without plasma constituents binding to the glycocalyx such as albumin, the glycocalyx has no active physiologic role.

Once the structure binds plasma constituents, like albumin to its surface, they together form the active endothelial surface layer. The surface has a negative charge and repels other negatively charged molecules as well as red and white blood cells along with platelets (Alphonso & Rodseth, 2014).

How It Helps:

• Regulates vascular permeability by acting as a double barrier to large and small molecules
• Regulates vascular tone
• Protects endothelial cells from shear stress
• Prevents adhesion of white blood cells and platelets to vessel wall
• Docks coagulation enzymes creating antithrombogenic effect in vasculature
• Allows red blood cells to flow smoothly through vessel (Biddle, 2014)

Lab Testing & Treatment

Using glycocalyx degradation as a marker for severity of endothelial damage and/or critical illness may be a potential laboratory value of merit. It may also be a new screening tool for sepsis (Martin, Koczerz, Zechendorf, & Schuwerbel, 2016). Currently, there is not enough research to demonstrate its routine use. Point-of-care testing may be worth further research.

Damaged Endothelial Glycocalyx Worsens Patient Outcomes

Signs and symptoms of a damaged glycocalyx include:

• Capillary leak
• Edema
• Increased inflammation
• Platelet aggregation
• Hypercoagulability
• Loss of vascular tone

Lab data that shows an elevation in serum glycocalyx shedding positively correlates with a worsening clinical outcome in critical illness (Colbert & Schmidt, 2016). When the glycocalyx is damaged, parts of the structure are broken down and the flow of blood releases these parts into circulation (see figure 2).

Figure 1. Microscopy of vessel lumen with enlargement of glycocalyx. Source: (Robinson & Wattam, 2013)

Figure 2. Microscopy before and after ischemia has damaged the glycocalyx. Source: (Biddle, 2014)

Main Culprits

Ischemia

Without oxygen, the glycocalyx begins to degrade and shed its full, thick coat. The vessels that supply blood to the heart as well as the vessels that supply blood to the central nervous system are particularly more sensitive to ischemia (see figure 2). Once shedding starts, leukocyte and platelet adhesion to the epithelial surface exacerbates the injury (Biddle, 2014). Higher concentrations of serum glycocalyx components have been noted particularly in peripheral arterial surgery and coronary artery bypass surgery (Alphonso & Rodseth, 2014).

Inflammation

Inflammatory mediators, such as cytokines, in trauma and septic patients degrade the glycocalyx. The cleavage of the glycocalyx renders the endothelium bare; this contributes to capillary leakage (Chen, 2016a). Also, shearing stress to the endothelium causes release of nitric oxide which in turn causes vasodilation of blood vessels. This is one reason why septic patients are profoundly hypotensive in addition to the hypovolemia caused by fluid leaking out into the interstitial space. Serum levels of glycocalyx degradation in septic patients are correlated with worse outcomes (Chen, 2016b).

Hyperglycemia

Elevated blood glucose, especially in type-1 diabetic patients, degrades the glycocalyx. Research has shown that type-1 diabetics have half the thickness of a normal glycocalyx when compared to non-diabetic counterparts (Alphonso & Rodseth, 2014). Even in healthy, non-diabetics, 6 hours of hyperglycemia degrades the systemic glycocalyx by 50% (Biddle, 2014).

Implications

Despite the lack of treatment options to reduce the severity of damaged endothelial glycocalyx, understanding its purpose and the negative consequences it can have will allow clinicians to avoid exposing their patients to the main culprits of degradation.

Future research should be focused on point-of-care lab testing and effective microcirculation-protective therapies.

Conclusion

The glycocalyx is an underappreciated component of the endothelial vascular layer that resides within the lumen of blood vessels. Due to its sensitive nature, every effort to protect its structure should be utilized. By avoiding ischemia, hypovolemia, hypoglycemia, and other complications can be avoided. Analyzing the microcirculation is a promising new way to detect early dysfunction and improve the outcomes for those who are critically ill.