Otterbein University

Digital Commons @ Otterbein

Nursing Student Class Projects (Formerly MSN)

Student Research & Creative Work

Summer 7-22-2018

Aortic Aneurysms

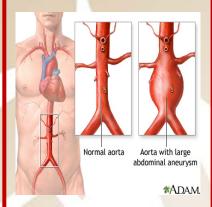
Trevor Cowles Otterbein University, trevor.cowles@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

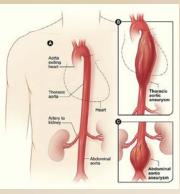
Recommended Citation

Cowles, Trevor, "Aortic Aneurysms" (2018). Nursing Student Class Projects (Formerly MSN). 273. https://digitalcommons.otterbein.edu/stu_msn/273


This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Nursing Student Class Projects (Formerly MSN) by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact digitalcommons07@otterbein.edu.

Aortic Aneurysm

Trevor Cowles, RN, BSN, SRNA Otterbein University, Westerville, Ohio

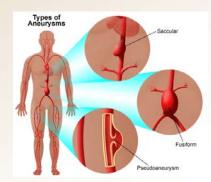

What is an aneurysm?

- Aortic aneurysms are characterized by local inflammation with degeneration around the aorta, which leads to weakening and widening of the vessel.
- Can be congenital or acquired and occur at different locations of the thoracic or abdominal wall
- Wall rupture is ultimately a mechanical failure that occurs when intramural stresses exceed wall strength

Why Aneurysm

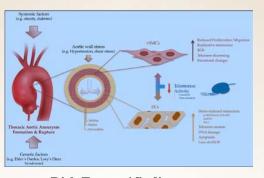
Working in a cardiac surgery intensive care has allowed me to take care of patients with aneurysm repairs and it generated an interest to learn more behind the pathophysiology of their making.

Pathophysiological process


- IL-6 has already been suggested as prognostic biomarker for AAA
- Elastic strength and displacement under stress depend on the smooth muscle cells in the aortic wall
- In the early stage of aneurysm, endothelial cells, under hemodynamic shear stress, secrete major attractant protein, MCP-1, and IL-6
- This triggers recruitment of monocytes from the blood into the media layer of the arterial wall
- The monocytes mature into macrophages
- Macrophages from the adventitia are also chemoattracted by MCP-1, IL-6 and IL-8
- T cells are activated by contact with macrophages in the presence of IL-12, and macrophages are activated by IFN-γ produced by the T cells
- Fibro- blasts produce collagen, and the collection of MMP, TIMP and collagen weaken the ability of the adventitia layer to withstand stress.
- Macrophages are known to cause apoptosis in SMCs, and this leads to reduction in elastin, thus weakening the elastic strength of the media.

Significance of pathophysiology

- Fatal hemorrhage, paraplegia caused by interruption of anterior spinal artery, abdominal ischemia stroke, myocardial ischemia, lower extremity ischemia, renal failure, impotence, and cardiac tamponade.


Signs and symptoms

- Sudden, intense and persistent abdominal or back pain, which can be described as a tearing sensation
- Pain that radiates to your back or legs
- Sweatiness
- Clamminess
- Dizziness
- Nausea
- Vomiting
- Low blood pressure
- Fast pulse

Nursing Interventions

- Monitor for signs and symptoms of spinal cord ischemia such as pain, numbness, paresthesia, and weakness caused by dissection.
- Monitor for signs of stroke or cardiac tamponade caused by dissection.
- Check extremities for sensation, temperature, pulses, color, capillary refill, and petechiae.
- Monitor for bleeding from the wound and for signs of hemorrhage, hypotension, tachycardia, pallor, and diaphoresis.
- Monitor urinary output hourly.
- Administer antibiotics, if ordered, to prevent infection.
- Administer pain medication, as ordered, or monitor patient-controlled analgesia.
- Teach the patient about blood pressure medications and the importance of taking them as prescribed.
- Teach the patient to recognize and report signs and symptoms of an expanding aneurysm or rupture.

Risk Factors/ findings

- The central histological findings in nonsyndromic Abdominal thoracic aortic aneurysm (ATAA) analyses are the loss of smooth muscle cells (media degeneration) and the alteration of elastic fiber structures
- Major factors are: the MMP2/9-TIMP system, smooth muscle stress and cell death, aging processes (telomere length), alterations in genes and protein expression and function
- The major risk factor for non-syndromic ATAA formation is hypertension, and antihyper- tensive therapy is a *gold standard* in the treatment of ATAA patients.

Conclusion

- Aortic aneurysms result from degeneration of the medial wall, which occurs as a normal part of the aging process as well as with hypertension, atherosclerosis, trauma or infection, immunologic conditions, and as a complication of Marfan Syndrome
- Thoracoabdominal aortic aneurysm may originate in the ascending aorta and aortic arch (frequent site of dissection) or in the lower descending thoracic aorta and upper abdominal aorta.
- Aortic aneurysms develop by various pathophysiological processes and is clinically significant for life.
- Surgical Intervention is the only way to fix these processes once a certain circumference develops.

References

- Abdominal aortic aneurysm. (2018, March 13).
 Retrieved from
- https://www.mayoclinic.org/diseasesconditions/abdominal-aorticaneurysm/symptoms-causes/syc-20350688
- Aschacher, T., Salamch, O., Enzmann, F., Messner, B., & Bergmann, M. (2018). Telomere Biology and Thoracic Aortic Aneurysm. *International Journal of Molecular Sciences*, 19(1), 1-16. doi:10.3390/ijms19010003
- Azar, D., Ohadi, D., Rachev, A., Eberth, J. F., Uline, M. J., & Shazly, T. (2018). Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study. *Plos ONE*, 13(2), 1-15. doi:10.1371/journal.pone.0192032
- Doppler, C., Arnhard, K., Dumfarth, J., Heinz, K., Messner, B., Stern, C., & ... Bernhard, D. (2017). Metabolomic profiling of ascending thoracic aortic aneurysms and dissections Implications for pathophysiology and biomarker discovery. *Plos ONE*, 12(5), 1-15. doi:10.1371/journal.pone.0176727
- Hao, W., Gong, S., Wu, S., Xu, J., Go, M. R., Friedman, A., & Zhu, D. (2017). A mathematical model of aortic aneurysm formation. *Plos ONE*, 12(2), 1-22. doi:10.1371/journal.pone.0170807
- MalekZadeh, S., Fraga-Silva, R. A., Trachet, B., Montecucco, F., Mach, F., & Stergiopulos, N. (2013). Role of the renin-angiotensin system on abdominal aortic aneurysms. European Journal Of Clinical Investigation, 43(12), 1328-1338. doi:10.1111/eci.12173
- N. (2012, September 23). Aortic Aneurysm. Retrieved from https://nursingcrib.com/nursing-notesreviewer/aortic-aneurysm/

