Papillary Thyroid Carcinoma

Nicolette Vanaman
nicolette.vanaman@gmail.com

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
Vanaman, Nicolette, "Papillary Thyroid Carcinoma" (2018). Master of Science in Nursing (MSN) Student Scholarship. 284.
https://digitalcommons.otterbein.edu/stu_msn/284
Background

“Thyroid gland sits in the middle of the neck around the windpipe. It makes a hormone called thyroid hormone, which is important for many metabolic functions” (Jin, J., 2017, p.1). Papillary thyroid carcinoma is the most common type of thyroid malignancy system. It accounts for 60,220 new cases each year and in 2013 in the United States, it accounted for an estimated 1,850 deaths. (Nguyen, Huang, Park, Khullar, & Hagermann, 2013) Thyroid carcinoma is typically the cause of PTC. (Plodkowski & Ehya, 2015) Lastly, anaplastic is so rare it doesn’t even account for 1% of thyroid carcinomas. Papillary carcinoma which is what we will be discussing accounts for 2015 in the United States, it accounted for an estimated 1,850 deaths. (Nguyen, Lee, Huang, Khullar, & Rote, 2014)

Pathophysiological Processes

Thyroid carcinoma is typically found by either the patient or primary care physician that palpates a small nodule on the thyroid. Thyroid nodules are common findings within the general public and a majority of the nodules found are usually benign. (Nguyen, Huang, Park, Khullar, & Plodkowski, 2015) A Thyroid nodule is a lump or cluster of growths in the thyroid which is located in the anterior portion within the cluster/growth of cells in the thyroid which is located in the anterior portion of the neck. About 5% of thyroid nodules are malignant. (Nguyen, Huang, Park, Khullar, & Plodkowski, 2015) Another way these are found are by incidental metastatic tumor findings that usually occur in the lymph nodes, lungs, brain, or bone. (McCance, Huether, Brase, & Rote, 2014)

Underlying Pathophysiology

Thyroid cells become cancerous when genetic abnormalities occur causing them to mutate. Some of these abnormalities include environmental factors such as radiation exposure. (Plodkowski, Ehya, & Pasternak, 2014) Once these gene mutations occur they cause the cells to grow and multiply. These cancerous cells do not die and continue to grow and spread. Once they have grown and multiplied in that area they then can travel and begin to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply. These cancerous cells do not die and continue to grow and multiply.