Type 1 Congenital Pulmonary Airway Malformation: The most common lung lesion in newborns.

Delilah Penn
Otterbein University, delilahannpenn@gmail.com
Type 1 Congenital Pulmonary Airway Malformation: The most common lung lesion in newborns.

Introduction

- Congenital pulmonary airway malformation (CPAM), previously known as congenital alveolar septal malformation (CASM), is a rare developmental anomaly in the respiratory tract.
- Identified in 1949 by Chin and Tang, who reviewed 200 previously reported cases of “a solid-septating mass consisting of an adenomatoid or gland-like proliferation of terminal respiratory tract epithelial cells occurring in infants or premature neonates with hydrops” (Rodrigo-De-Campos & Stocker, 1993).
- CPAM represents 25% of congenital lung malformations and 95% of congenital pulmonary lesions (Azizi-Khan & Zimmer, 2002).
- In 1991, the Stocker Classification system was created to identify the different types of CPAM. Currently the Stocker Classification system has identified Type 0, Type 1, Type 2, and Type 3 lesions.
- Only Type 1 congenital lung lesion is detected prenatally.
- Due to the effectiveness of prenatal ultrasonography, CPAM is commonly diagnosed between 16-21 weeks gestation (Kauarzynska & Impellizzeri, 2015).
- There are CPAM lesions that are not identified during routine ultrasounds and present later in life.
- According to Karayanni & Impellizzeri, “this lesion occurs more in males and is primarily unilateral, but may occur bilaterally.”
- Most CPAMs are manageable with early or prenatal intervention.
- During pregnancy lung development occurs over the course of 5 distinct stages.
- Embryonic stage, during weeks 4-7, initiates the development of lung buds, branching and vascular development.
- Pseudoluminal stage, during weeks 7-17, consists of the growth and branching of the tracheobronchial tree.
- Terminal branching occurs in the Cricoid stage, weeks 16-21.
- Gas exchange is initiated during the Saccular stage during weeks 24-38.
- Lastly, in the Saccular stage terminal airways form, and this stage starts at 38 weeks and continues until age 2 (McBride, 2016).
- CPAM develops during the early stages of lung development. Although the exact pathogenesis is unknown, it is suspected that “abnormal events during organogenesis result in the formation” of lung lesions (McBride, 2016).
- Gajewskia-Knapik & Limpy, 2015, state “there is a failure of maturation of bronchial structures during pseudoluminal stage of lung development. It results in excess of the terminal bronchioli without corresponding alveoli. CPAM have a normal blood supply from the pulmonary arteries and communicate with the tracheobronchial tree” (Gajewskia-Knapik & Limpy, 2015).
- Large focal CPAM specimens that were resected displayed “increased cell proliferation and decreased apoptosis compared with gestational age-matched normal fetal lung tissue” (Azizi-Khan & Zimmer, 2000).
- Three genes have been implicated in the pathogenesis of CPAM. The HOXB5, Fgf7 and PDGF-BB play a critical role in “branching morphogenesis, induction of growth factors, mesenchymal proliferations, and mesenchymal-epithelial interactions” (Azizi-Khan & Zimmer, 2008).

Type 1 CPAM
- Composed of single or multiple large cysts, ranging from three to ten centimeters surrounded by smaller cysts.
- Predominant cystic type. They are confined to one lobe, and are filled with air or fluid.
- Some lesions to communicate with bronchi associated anomalies are rare in this subtype.
- Present during the first week to month of life.
- Larger cysts are lined with pseudostratified columnar epithelium.
- Smaller cysts are lined with cuboidal to-ovals, typically seen in clusters.

Pathophysiologial Processes
- Antenatal presentation
 - CPAM may manifest in a mother who displays polyhydramnios. It is “been proposed that impaired fetal swallowing due to mass effect on the esophagus, increased fluid production or decreased fluid absorption by the lesion, and secretion of antidiuretic hormone” (Rodrigo-De-Campos & Stocker, 1991).
- Nonimmune Hydrops is seen in CPAM and is thought to be due to impaired cardiac contractility and impaired venous return to the heart due to compression of the heart and inferior vena cava by the lesion (Rodrigo-De-Campos & Stocker, 1991).
- Postnatal presentation
 - The majority of newborns present with respiratory distress immediately following delivery. The infant may display grunting, tachypnea, retractions, and cyanosis. Upon auscultation, the healthcare provider may notice diminished breath sounds and distal or stilted heart sounds (Rodrigo-De-Campos & Stocker, 1991).

Signs and Symptoms
- CT scan of Type 1 CPAM in right lobe
 - Case courtesy of Dr. Frank Galliard, Radiopaedia.org, rID: 8277
 - http://radiopaedia.org/articles/congenital-pulmonary-airway-malformation

Clinical Implications
- CPAMs are increasingly being diagnosed during pregnancy. Accurate diagnosis of CPAM is important as the treatment of lesions may differ depending on the type. Although most lung lesions are detected during antepartum, some are not, therefore it is imperative that healthcare providers be informed of the pathogenesis and presentation of patients with CPAM. Infants presenting with respiratory distress will require healthcare providers who are trained in stabilization and resuscitation of the newborn.
- Mechanical ventilation may be required if respiratory distress is severe. Health care providers must be aware of the risk of pneumomediastinum, pneumomediastinum, and pneumomediastinum in patients receiving mechanical ventilation.
- Frequent assessments of respiratory status is required as well as ready access to an ultrasound to monitor the need and level of support (Fulgosi & Vaupel, 2002).

Conclusion
- CPAM is a rare congenital anomaly that typically presents in the neonatal period during lung development. Early detection of CPAM usually occurs during routine ultrasonography. Infants with CPAM may present with respiratory distress at birth and require immediate respiratory support and immediate surgical treatment. The prognosis of infants who present with CPAM is dependent upon the site of the lesion, the development of healthy lung tissue, and the presence of other anomalies.
- Early Infant/Childhood/Adulthood
 - Infants present with respiratory distress, vomiting, failure to thrive, and recurrent pneumonias. Children and adults typically present with recurrent infection localized to the involved lobe of the lung (Rodrigo-De-Campos & Stocker, 1991).

References

Figure 1 Stages of lung development (Hamied, et al 2013)