Summer 2016

Neurohormonal Activation in Cardiorenal Syndrome

Eric J. Glasstetter
eric.glasstetter@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Nursing Commons

Recommended Citation
https://digitalcommons.otterbein.edu/stu_msn/148

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Nursing Student Class Projects (Formerly MSN) by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact digitalcommons07@otterbein.edu.
Neurohormonal Activation in Cardiorenal Syndrome

Eric Glasstetter, BSN, RN, CCRN
Otterbein University, Westerville, Ohio

Introduction

Cardiac and renal functioning are highly related as each system is interdependent on the other; and, subsequently, dysfunction of one system can potentiate the development of dysfunction of the other; a condition referred to as Cardiorenal Syndrome, or CRS. (Scully & Goldsmith, 2013). In CRS, heart failure and renal failure exist together: Heart failure is the result of decreased heart efficiency and a rise in hemodynamic and neurohormonal changes (Nicholson, 2014). A decrease in cardiac function and cause dysfunction of other body systems, including the renal system, and at the same time, impaired renal function can result in increased fluid retention and increased systemic vascular resistance and can prove to be detrimental to cardiac function. According to Giam, et al., (2015), the prevalence of heart failure is expected to rise nearly 46% from 2012 to 2030 secondary to the increase in obesity and associated comorbid conditions. With the prevalence of heart failure expected to rise drastically, renal dysfunction associated with heart failure is expected to rise as well, with heart failure being responsible for nearly 44% of deaths. In patients with end-stage renal disease (Giam, et al., 2015), Cardiorenal syndrome can be related to five sub-acute classes.

A significant portion of the interdependence of cardiac and renal functioning is related to neurohormonal mechanisms, most notably the renin-angiotensin aldosterone system, or RAAS. For this reason, angiotensin converting enzyme (ACE) inhibitors are known to be very beneficial in the treatment of heart failure, however, ACE-I can potentially have detrimental renal effects (Naka & Ghoghladze, 2012). This can make the management of CRS difficult for practitioners and specialists. Considerations must be made. Cardiorenal Syndrome can present a complex challenge for practitioners and with new evidence-based research being released, there exits the possibility for growth and understanding.

Signs and Symptoms

The signs and symptoms associated with CRS are similar to those experienced in heart failure. The signs and symptoms are the result of cardiac and renal dysfunction combined. The New York Heart Association classification scale can be used to describe symptoms.

Class I: Heart failure is associated with no limitations to ordinary activity and can progress to class IV, in which symptoms are present even at rest and activity only exacerbates disease.

Other signs and symptoms include:

- Orthopnea
- Paroxysmal Nocturnal Dyspnea (PND)
- Reduced Activity Tolerance
- Chest pain
- Edema
- 2 to 3 kilogram weight gain per week
- Pulmonary edema and cracks
- Arrhythmias

Patients should be educated on warning signs of complications and what to do when acute issues arise. Complications could arise quickly, intervention can reduce the likelihood of exacerbations.

Nursing Implications

Nearly five million people in the United States are diagnosed with heart failure, and another half a million each year. There is a significant economic burden as well, with nearly $35 billion associated costs in 2010 (Coons, McGraw, & Murali, 2011). Lifestyle modifications should include the elimination of behaviors that can further decrease cardiac function.

- Smoking
- Diet
- Exercise
- Alcohol use

Education is essential to reduce the risks associated with medications used in CRS management, especially hypotension. Patients should be educated to:

- Eliminate the use of NSAIDS which can decrease renal function and should be taught to
- Limit salt substitutes (often low sodium diets are implemented), as the replacements can be high potassium (O’Donovan, 2014)
- Serum potassium and creatinine levels should be monitored by practitioners for the assessment of renal function. At the initiation of an ACE-I, renal function should be monitored, and as dosing is adjusted according to O’Donovan (2014).

Underlying Pathophysiology

The common pathological mechanism of CRS is the chronic activation of the RAAS resulting in oxidative stress leading to impaired cardiac and renal functioning. When cardiac output is decreased, hypoperfusion of the kidneys and a decrease in glomerular filtration rate (GFR) can result. This decrease in perfusion results in the activation of the RAAS, a normal mechanism of compensation. Activation of the RAAS system results in several changes. First, conversion of angiotensin to angiotensin II results in vasoconstriction, in turn, increased systemic vascular resistance and blood pressure. Second, Aldosterone is stimulated to be released from the adrenal cortex. Aldosterone results in the retention of fluid and sodium from the kidneys. The net effects of the RAAS system is increased blood volume and systemic vascular resistance to increase renal perfusion. A negative feedback system then inhibits the RAAS system once homeostasis is returned (Klabunde, et al., 2014).

Conclusion

Cardiorenal Syndrome is a highly complex pathological processes that involves several mechanisms. The RAAS system acts normally as a compensatory neurohumoral mechanism to maintain GFR and renal perfusion. Cardiorenal syndrome is highly complex pathological processes that involves several mechanisms. The RAAS system acts normally as a compensatory neurohumoral mechanism to maintain GFR and renal perfusion. Cardiorenal syndrome is a highly complex pathological processes that involves several mechanisms. The RAAS system acts normally as a compensatory neurohumoral mechanism to maintain GFR and renal perfusion.

References

Table 1. Classifications of CRS

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Acute cardiac injury results in renal injury</td>
</tr>
<tr>
<td>Class II</td>
<td>Heart failure leading to chronic renal failure</td>
</tr>
<tr>
<td>Class III</td>
<td>Acute kidney injury resulting in cardiac failure</td>
</tr>
<tr>
<td>Class IV</td>
<td>Chronic renal failure leading to heart failure</td>
</tr>
<tr>
<td>Class V</td>
<td>Cardiac and renal dysfunction secondary to a systemic disease</td>
</tr>
</tbody>
</table>

Table 2. RAAS System

<table>
<thead>
<tr>
<th>Agent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renin</td>
<td>Converts angiotensinogen to angiotensin I</td>
</tr>
<tr>
<td>ACE</td>
<td>Inhibits the conversion of angiotensin I to angiotensin II</td>
</tr>
<tr>
<td>Aldosterone</td>
<td>Increases sodium and water reabsorption in the kidneys</td>
</tr>
</tbody>
</table>

Figure 1. Cardiac Syndrome (House, et al., 2010):

In Cardiorenal syndrome, heart failure management becomes chronically activated, resulting in deleterious effects that can potentiate the failure of both cardiac and renal functioning. Chronic activation of the RAAS system can result in hypertension, inflammation, apoptosis, and oxidative stress. Angiotensin II appears to be a significant contributor in CRS. A chronic elevation of angiotensin I has been shown to induce apoptosis in renal and cardial cells as well as activation of NAGPd-oxidase. NAGPd-oxidase leads to increased reactive oxygen species (ROS) which in turn reduces the availability of nitric oxide (vasodilating effects in normal circumstances) and increased vasoconstriction. The increased levels of ROS also stimulate the production of pro-inflammatory mediators. The best understood mediators are interleukin 6 and transforming growth factor-beta, which contribute to fibrosis in both the heart and kidneys. Fibrotic tissue results in a change of structure, producing a change of function. Angiotensin II is also responsible for the stimulation and release of aldosterone, which when chronically activated, can cause increased collagen formation and further increasing fibrosis (Giam, et al., 2016). According to Koniari, et al. (2010), the cytokines produced also have a negative inotropic effect, which causes a further reduction in cardiac output and renal perfusion. When combined together, all components lead to decreased functioning of cardiac and renal systems. Other deleterious effects of chronic activation of the RAAS system includes an increased preload and afterload, which can complicate heart failure further.

Figure 2. RAAS System (Klabunde, 2014)