Summer 2015

Neuroleptic Malignant Syndrome: A Pathophysicological Dilemma

Samantha Davis

Otterbein University, samantha.davis@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Medical Pathology Commons, Nursing Commons, and the Pathological Conditions, Signs and Symptoms Commons

Recommended Citation

https://digitalcommons.otterbein.edu/stu_msn/115

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Master of Science in Nursing (MSN) Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact shickey@otterbein.edu.
What is NMS?
Neuroleptic malignant syndrome (NMS) is a rare disease occurring from an adverse reaction to antipsychotic use. The diagnosis and predictability of the disease is extremely difficult as it mimics other syndromes (Margetić & Aukst-Margetić, 2010). The disease onset can occur at any dose (Paul, Michael, John, & Lenox, 2012). Further increasing the difficulty of diagnostics, signs and symptoms are very wide spread. The diagnostic and Skin Syndrome Manual of Mental Disorders created a tool to assist in the clinical setting, it, “requires the presence of 2 core features of severe muscle rigidity and elevated temperature after recent initiation or change in dosage of an antipsychotic, along with 2 or more of the following symptoms: diaphoresis, dysphagia, tremor, incontinence, elevated blood pressure, leukocytosis, and elevated creatine kinase (CK) levels” (Paul, Michael, John, & Lenox, 2012). The basis of diagnostics has been primarily due to sudden and profound decrease in dopamine D2 receptor blockade (Paul, Michael, John, & Lenox, 2012). The basis of diagnostics have been primarily due to sudden and profound decrease in dopamine D2 receptor blockade (Paul, Michael, John, & Lenox, 2012). The basis of diagnostics have been primarily due to sudden and profound decrease in dopamine D2 receptor blockade (Paul, Michael, John, & Lenox, 2012).

Pathophysiology Dilemma
The pathophysiology of NMS is not completely understood, but there are theories and assumptions that have been found. The major dysfunction is thought to be due to sudden and profound decrease in dopamine D2 receptor blockade (Paul, Michael, John, & Lenox, 2012). It is imperative for nursing to prevent secondary effects through appropriate positioning, hydration, frequent turning, close monitoring of vital signs and respiratory status, and daily skin assessments to name a few precautions.

NMS: Devastating Effects
NMS although rare can be fatal. NMS has a spectrum of severity from minor to severe. It has been shown in evidence based practices that if diagnosed and treated early enough can drastically reduce the severity (McDermott, Noordsy, & Traum, 2013). It is important for clinicians and patients to watch for these signs and symptoms when escalating doses of antipsychotic medications or adding new or adjunctive antipsychotics. Those that live with the patients taking antipsychotics also need education to watch for these trigger signs.

Clinical Course

<table>
<thead>
<tr>
<th>Altered level of consciousness</th>
<th>Requirements of mechanical ventilation and use of restraints (Hashim, Zeb-un-Nisa, Alrnik, & Ali Madani, 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated CPK</td>
<td>Acute renal failure</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>Risk for aspiration and long term NPO status leading to malnutrition</td>
</tr>
<tr>
<td>Diaphoresis</td>
<td>Skin breakdown</td>
</tr>
<tr>
<td>Labile blood pressure</td>
<td>Circulatory collapse and death</td>
</tr>
<tr>
<td>Muscle rigidity and bradykinesis</td>
<td>Risk for deep vein thrombosis, skin breakdown, rhabdomyolysis</td>
</tr>
<tr>
<td>Elevated temperatures</td>
<td>MRI image has shown damage to cerebral and basal ganglia due to breakdown of membrane lipid, protein denaturation, and mitochondrial dysfunction (Lyons, & Cohen, 2013).</td>
</tr>
</tbody>
</table>

Effects

The NMS has been a dilemma in the medical field. The pathophysiology has not been fully discovered. Diagnosis is rather difficult through mimicking of other syndromes and diseases. Types of treatments are controversial while standard medical practice has not been developed yet. The onset is unpredictable occurring at any dose. Standard practice for escalating doses of antipsychotic medication has only been made for a few such as quetiapine and clozapine (Langan, Martin, Shahajan, & Smith, 2012). After recovery re-challenging antipsychotic medication is still under debate. NMS is rare and typically self-limiting within 7-10 days if the antipsychotic medication is discontinued (Hashim, Zeb-un-Nisa, Alrnik, & Ali Madani, 2014). Although there are those cases that are severe enough to cause respiratory and cardiovascular compromise. Nevertheless there is some information through evidence based practice that is certain. Those with history of NMS are to be treated with single oral antipsychotic medication with low doses and escalating as slow as possible (Ouyang & Chu, 2013). There is a much greater risk with using intravenous or intramuscular routes (Yanfen, Yahui, & Aiguo, 2014). Lastly and most important to note is that fast recognition and treatment have been proven to decrease the severity of symptoms.

The Dilemma In Conclusion

References

Neuroleptic Malignant Syndrome: A Pathophysiological Dilemma
Samantha Davis RN, BSN, CRN
Otterbein University, Westerville, Ohio

[Image of a case with NMS]