
Otterbein University Otterbein University

Digital Commons @ Otterbein Digital Commons @ Otterbein

Undergraduate Honors Thesis Projects Student Research & Creative Work

Spring 2020

Randomized Algorithms and How Society Uses Them Everyday Randomized Algorithms and How Society Uses Them Everyday

Rosaley Milano
Otterbein University, rosaley.milano@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_honor

 Part of the Mathematics Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Milano, Rosaley, "Randomized Algorithms and How Society Uses Them Everyday" (2020). Undergraduate
Honors Thesis Projects. 101.
https://digitalcommons.otterbein.edu/stu_honor/101

This Honors Paper is brought to you for free and open access by the Student Research & Creative Work at Digital
Commons @ Otterbein. It has been accepted for inclusion in Undergraduate Honors Thesis Projects by an
authorized administrator of Digital Commons @ Otterbein. For more information, please contact
digitalcommons07@otterbein.edu.

https://digitalcommons.otterbein.edu/
https://digitalcommons.otterbein.edu/stu_honor
https://digitalcommons.otterbein.edu/stu_pub
https://digitalcommons.otterbein.edu/stu_honor?utm_source=digitalcommons.otterbein.edu%2Fstu_honor%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.otterbein.edu%2Fstu_honor%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.otterbein.edu%2Fstu_honor%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.otterbein.edu/stu_honor/101?utm_source=digitalcommons.otterbein.edu%2Fstu_honor%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons07@otterbein.edu

Randomized Algorithms and How Society Uses Them Everyday

Otterbein University

Department of Mathematics

Westerville, Ohio 43081

Rosaley Milano

8 April 2020

Submitted in partial fulfilment of the requirements

for graduation with Honors

David Stucki, MS

Project Advisor Advisor’s Signature

Pei Pei, Ph.D

Second Reader Second Reader’s Signature

Erica Van Drop, MS, ACE-CPT, ACSM-GEI, TSAC-F

Honors Representative Honor Rep’s Signature

ii

Acknowledgments

 First, I would like to thank my advisor Professor Stucki. From the beginning he has

been a constant source of support. I ended up in his office after struggling for weeks to find

a topic. But that day he assured me that we would find a topic together and whether he

would be a good fit as an advisor or not, he would be there to help. It was this unwavering

support that got me through some hard times during this project. No matter what

happened I always felt like I had someone in my corner and without his guidance and help I

am not sure that I would have completed this project. I am also eternally indebted to him

for introducing me to computer science. Thank you for sharing your passion with me and in

turn helping me realize mine.

 Next I would like to thank Dr. Pei, Dr. Berndt and Dr. Van Drop for their time and

input. I would also like to thank my parents for their consistent support and

encouragement during this project and throughout my time at Otterbein. They know more

than anyone how difficult these four years have been and throughout it all I have been so

grateful to have them as my parents.

iii

Abstract

Randomness is an interesting and very beneficial phenomenon. In computer science

randomness facilitates great advances in efficiency but topics like randomized algorithms

aren’t taught until someone enters graduate school. This paper provides undergraduates as

well as people unacquainted with computer science an opportunity to explore the topic of

randomness by guiding them from essential topics all the way through the graduate level

topic of randomized algorithms. Topics like what an algorithm is, how they are represented

and the history that brought them into existence bring the reader up to speed before diving

deeper into randomized algorithms. A discussion of complexity theory is used to motivate

the reader as to why randomized algorithms are so important and beneficial. Then the

remainder of the paper is used to describe the categorization of randomized algorithm by

goal as well as some of the applications of randomized algorithms including hashing,

random sampling and generating random numbers. The paper concludes with a discussion

of a real-world application of randomized algorithms, the Kidney Exchange Problem, where

incompatible patient-donor pairs are matched with others to facilitate successful kidney

transplants.

iv

Table of Contents

Acknowledgments .. ii

Abstract .. iii

Introduction .. 1

Algorithms ... 1

Representing Algorithms ... 4

History ... 9

Complexity and Efficiency .. 15

Monte Carlos vs. Las Vegas ... 17

Academic Applications ... 22

Applications ... 26

Conclusion... 27

Appendix ... 29

Bibliography ... 42

1

Introduction

 Chaos and order, each only exist in the absence of the other. Following Newton’s

discoveries in calculus and classical mechanics, scientists started leaning towards the belief

that everything in the universe could be determined, there was no such thing as chaos.

Pierre-Simon de Laplace, a French physicist, was one scientist who believed this. He

claimed that if someone (now known as Laplace’s demon) knows the position and forces

acting on every atom in the universe, all past and future movements could be calculated.

But as later discovered by Heisenberg, measuring the position and velocity of a particle at

the same time is impossible, thus knocking Laplace’s theory off its feet. As we will explore

in this paper, chaos and randomness are not only possible but also provide surprising

benefits for computers in the form of great advances in efficiency.

Algorithms

Almost every activity in life can be expressed as an algorithm. To motivate this let’s first

consider a simple example, a recipe. If you have ever cooked using a recipe you know that

the steps are clearly ordered and include all the information needed to carry each one out,

provided you have some knowledge about cooking. In addition, the steps in a recipe can be

completed so a result is produced, and it only requires a finite amount of time to complete

all the steps (Schneider 13). The average person reading a recipe doesn’t need to

acknowledge that it meets all these requirements but for them to complete the recipe, each

must be true. Let’s consider another example, something less structured, making a bed.

Consider the steps below to make a bed.

2

1. Check to make sure the fitted sheet is around the mattress. If it isn’t, pull each

corner around the mattress. Otherwise continue to the next step.

2. Pull the bottom most layer up towards the top of the bed. Continue this step until

there is only one layer left and that layer is the comforter.

3. Place the pillows at the top of the bed near the head board and pull the

comforter up over them.

Just like a recipe, all the steps are clearly ordered and contain all the information needed to

complete them. All the steps can be completed by any capable human to produce a bed that

was made in a reasonable amount of time.

As stated above, most everyday activities can be expressed as algorithms. After

analyzing recipes and how to make a bed you may be catching on to the requirements of an

algorithm. According to Schneider and Gersting, “An algorithm is a well-ordered collection

of unambiguous and effectively computable operations that, when executed, produce a

result and halt in a finite amount of time” (Schneider 12). But what does all that mean?

- Well ordered: The order of each operation or step is clearly defined.

- Unambiguous: Each operation is defined such that there is only one way to interpret

and carry it out.

- Effectively Computable: Each operation or step can be mechanized for a machine to

carry out.

- Produces a result: At the end of the algorithm something is produced. It doesn’t have

to be the result we were attempting to produce but there is some indication that the

algorithm executed.

3

- Halts in a finite amount of time: A result can be produced and will not take forever

(Schneider 12-16).

So far, we have only provided examples of one type of algorithm, a deterministic

algorithm. The defining factor of a deterministic algorithm is that for some fixed input it

will always produce the same output. Think back to our recipe example and suppose you

are making cookies. If you follow the recipe, you will always end up with cookies. Each

batch will mostly likely vary slightly but using the same recipe will always produce cookies

and not something else like a cake. The fact that a recipe will always produce the same

thing is what makes it a deterministic algorithm.

A randomized algorithm is an algorithm that uses randomness to decide what to

do next. Thus, randomized algorithms fall into the category of nondeterministic

algorithms because for some

fixed input it will always

produce a different output. A

simple example of a

randomized algorithm is a

modified version of a choose

your own adventure story.

Instead of choosing what path

to take, at each crossroad a

random number would be

generated and that would
Choose your own adventure

4

determine what path to take. This modified version of a choose your own adventure story

is a randomized algorithm because randomness is dictating what happens and even with

the same starting point there will be a different ending. Now that we have covered the

basics of what algorithms are, we can begin to address what they have to do with

computers.

Representing Algorithms

 Computers are inherently stupid. Without explicit instructions that are given in a

language they can understand, they are unable to do anything. Humans write computer

programs, a set of instructions that the computer can understand, to be able to

communicate with computers. It is important to note that an algorithm and a computer

program are two separate entities. An algorithm can be written in natural languages, such

as English, like the example above or it can be written into a computer program. And a

computer program can have an algorithm in it, or it can just be a meaningless set of

instructions. But for all intents and purposes, it is valid to view programming as the act of

translating algorithms so computers can carry them out (Hromkovic 47).

There are many different programming languages each with their own rules and

syntax. You may be asking yourself how there can be so many different programming

languages, aren’t computers supposed to be stupid? Computer hardware that your

program runs on never actually sees the code that is displayed on your screen. A compiler

takes the code you have written in whatever language and converts it to machine language

which is what is run on the computer’s hardware. So, although there are many different

programming languages, they are only used to make the programmers’ job easier by

5

allowing them to not have to deal directly with the machine language. Every computer at its

core runs on machine language.

Often when first learning about algorithms and how to represent them, pseudocode

is used. Pseudocode is a structured subset of English but without all the details of a

specific programming language (Schneider 14). So, pseudocode mimics all the structures of

a program without having to learn all the details of a specific programming language. There

are three main categories of operations that we can represent; sequential, conditional and

iterative operations. These types of operations are seen in most programming languages

but, as mentioned before, have different syntax.

Sequential Operations

 A sequential algorithm is an algorithm that uses sequential operations in order to

execute each operation one after another from top to bottom. So sequential operations

are operations that execute one after another without affecting the sequence of the

algorithm. The three types of sequential operations are computations, input and output.

Input and output operations are used to communicate with the user; they either get or give

information. Computational operations are operations that do arithmetic and any kind of

data manipulation (Schneider 48-50).

• Computations

Set the value of “variable” to “arithmetic operation”

Ex. Set the value of x to 4+5

6

• Input

Get a value for “variable1”, “variable2”, …

Ex. Get a value for x, y and z

• Output

Print the value of “variable1”, “variable2”, …

Ex. Print the value of x, y and z

Conditional Operations

 Conditional operations, unlike sequential operations, affect the flow of the

algorithm. As the name suggests when a conditional operation is used there is a condition

that is checked. And depending on if that condition is true or false, different sets of

instructions are executed. Once the correct set of

instructions has been executed the program moves on

to the instructions outside of the conditional operation.

In pseudocode conditional operations are represented

by an if statement (Schneider 51-53).

• If statements

 if “a true or false condition” is true then

 instructions

 else (the above condition was false)

 other instructions

7

Ex.

 if (x = 5) then

 Set the value of x to x + 2

 else

 Set the value of x to x + 3

Iterative Operations

 Iterations operations are also operations that affect the flow of the algorithm. But

unlike conditional operations, iterative operations will continue to execute until the

condition is no longer true which is why they are typically

called loops. There are two types of iterative operations,

while do and do while loops (Schneider 54-58).

• While do

1. Evaluate the condition
a. If the condition is true execute the

following instruction
i. Once you get to the bottom of the

instructions go back up to the
condition and reevaluate it.

b. If the condition is false, skip the block of
instructions

Ex.

 While (x < 5) do

 Print the value of x

 Set the value of x to x + 1

 Get a value for y

Value of x
before the if
statement

X = 2

X = 3

X = 5

Value of x
after the if
statement

X = 5
(2 + 3)

X = 6
(3 + 3)

X = 7
(5 + 2)

Value of X before
the while do

loop

X = 2

X = 6

Value of X after

the while do
loop

X = 5

X = 6

Output

2
3
4

No output, the
while do never

executes

8

• Do while
1. Do the set of instructions
2. Evaluate the condition

a. If the condition is true return to the top of the
block of instructions and execute them again

b. If the condition is false, move on to the
remaining code in the program

Ex.

 Do

 Print the value of x

 Set the value of x to x + 1

 While (x < 5)

 Get a value for y

It is important to note that a do while loop will always execute at least once as with the case

where X = 6 in our last example. The same is not true for while do loops.

 Alan Turing, an influential figure in modern computing, established that sequential,

conditional and iterative operations are the fundamental operations; any problem that can

be solved by an algorithm will only need these operations.

Value of X
before the do

while loop

X = 2

X = 6

Value of X after

the do while
loop

X = 5

X = 7

Output

2
3
4

6

9

History

The history of algorithms starts with the Euclidean Algorithm, a deterministic

algorithm from 300 BC. The Euclidean algorithm, which is still used today, finds the largest

integer that divides A and B, which are also both integers. The greatest common divisor of

A and B, GCD(A, B), is found by first dividing B into A and labeling the remainder as r1. The

remainder r1 is then divided into B and the new remainder is labeled r2. This is repeated

until the remainder is zero. The GCD is the last nonzero remainder. The example above

shows how to use the Euclidean algorithm to find GCD(8633,8051). This very basic

deterministic algorithm can be used to reduce fractions or find the solutions to a linear

equation. Refer to the appendix for a more in depth discussion of Euclid’s algorithm and

consequences of it (Burger).

After the development of the Euclidean algorithm, deterministic algorithms to solve

a wide range of problems continued to be discovered and integrated into the world. And

like the Euclidean algorithm, they were all being carried out manually by human computers

(prior to WWII the word computer was a reference to a profession rather than a

mechanical device).

During the industrial revolution in the 19th century that all changed. Instead of

humans performing algorithms, machines were being produced to perform algorithms that

10

required repetitive mechanical tasks. Unlike humans, they could be given step by step

instructions and perform a task all day without getting bored or needing to take breaks.

Then in the 1940’s there was another shift from machines performing mechanical

tasks to machines performing mental tasks. The machine that allowed this shift to occur

was the digital electronic computer which in the early days employed deterministic

algorithms to solve problems. As computers started to become more popular, it became

obvious that it was much more beneficial to society if computers could do the lower level

work, leaving humans more time for higher level thinking. This has persisted throughout

the years as, although computers are used for a multitude of tasks, at their core they are

still used to help solve problems by executing a series of deterministic algorithms.

Consider one of the simplest tasks that computers can perform, addition.

Surprisingly the deterministic algorithm that computers use to perform addition is very

similar to the way that everyone learns how to add in elementary school.

1. Add all the values in the ones position. If the sum is larger than 9, carry the tens

digit, always 1, to the next column.

2. Add all the values in the tens position. If the sum is larger than 9, carry the tens

digit, always 1, to the next column.

This process continues until every position had been added together. Ultimately

addition is an extremely easy thing to do, we learn it very early in our education. But even

though it is an easy task it is more beneficial to have a computer add than do it ourselves.

By having a computer deal with the easy things like addition, it allows us humans to focus

on the harder more important task at hand. Take for example a calculus student trying to

11

solve a problem. By passing easy arithmetic like addition off to the computer, the student

can focus on the more important task at hand, using calculus to solve the problem.

Since the development of computers spurred the development of deterministic

algorithms, what spurred the development of randomized algorithms? Randomized

algorithms really started gaining traction in the 1970’s when computer scientists realized

they were able to,

1. Outperform, in terms of runtime, the best-known deterministic algorithms for

the same problem

2. They are much easier to implement than deterministic algorithms of comparable

performance (Motwani 6).

A huge influence in randomized algorithms taking off was the development of two

efficient algorithms to determine if extremely large numbers, of approximately a hundred

digits, are prime. One algorithm was developed by Solovay and Strassen while another was

developed by Rabin which was based on work from Miller.

One may be asking themselves why it is so important to determine if a number that

large is prime or not, but large primes are the back bone of cryptology. Cryptology is a

branch of computer science which deals with the writing and solving of ciphers. A cipher is

an algorithm to encode or decode a message. A simple example of a cipher is a Caesar

cipher. Using this encryption technique involves writing the message out as normal. Then

each letter in the message is replaced with the letter 3 places to the right in the alphabet.

For example, anywhere in the message there is an “A” it gets replaces with “D”, “B” gets

12

replaced by “E” and so on until you get to “X” which gets replaced with “A”, “Y” which is

replaced with “B” and “Z” which is replaced with “C” (Schneider 409-410).

Encoding

X Y Z A B C D E F G H I J K …

A B C D E F G H I J K L M N …

Ex. Original Message: Computer science is awesome.

 Encrypted Message: Frpsxwhu vflhqfh lv dzhvrph.

The message can then be sent and if anyone intercepts it, it will look like gibberish.

Once the message reaches the person it was intended for, they do the exact opposite to get

the message back to English, the alphabet it shifted 3 letters to the left. So anywhere there

is a “D” it gets replaced with “A”, “E” gets replaced by “B” and so on until you get to “A”

which gets replaced with “X”, “B” which is replaced with “Y” and “C” which is replaced with

“Z”.

Decoding

A B C D E F G H I J K L M N …

X Y Z A B C D E F G H I J K …

Ex. Encrypted Message: Exw pdwk lv ehwwhu.

 Original Message: But math is better.

13

 But in all reality, this is not a very secure way to encode a message. Modern

encryption techniques are much more complicated, thus the need to find extremely large

prime numbers. RSA is an encryption technique that makes use of large prime numbers. In

this scheme there is a key to encoding the message which is public and is the product of

two very large prime numbers, found with a primality test. But the key to decode the

message is kept private and in order to find it you must find the prime factors of the public

key. Thus, RSA’s success is based on the difficultly in finding the prime factors of a very

large number, the public key. So, if someone needs to send some important information

over the internet it is important to use an encryption technique like RSA to keep anyone

who may intercept the information from figuring out what it says (Schneider 417-418).

 Thus, an algorithm that can efficiently find prime numbers to make a public

encryption key is very important. If a deterministic algorithm was used to try to figure out

if a number, n, with one hundred digits was prime, it would need to check if any number

between 2 and √𝑛 would evenly divide the value. Checking values up to √𝑛 confirms the

primality of n because n is made of two factors, a and b. We know that a or b will be less

than √𝑛 because otherwise 𝑎 ∗ 𝑏 would be larger than n. For prime numbers 𝑎 = 1 and 𝑏 =

𝑛, or vice versa. So, if we can’t find values for a and b between 2 and √𝑛 , n is prime

(Dietzfelbinger 1). Using this mathematical property makes things much easier but not easy

enough. Consider a value with three digits, say 100. A deterministic algorithm would have

to check if any value from 2 to 10 would divide 100. But if you jump up to seven digits, say

1,000,000, now it must check all values from 2 to 1000 to see if any of them divide

1,000,000. These two examples are not a big deal for a computer but when you are trying

14

to find a value that divides a number with hundred-digit, it becomes unrealistic for a

computer to do using a deterministic algorithm. We are left to use randomized algorithms.

 Solovay and Strassen as well as Rabin were both able to make randomized

algorithms with polynomial bound run-times. Both have two major similarities

1. If the input is prime, the output of the algorithm is a 0.

2. If the input is composite, the output is a 0 or 1. The probability that the outcome is

wrong is 1/2.

An error bound of 1/2 is not that great but by repeating the algorithm multiple times the

bound on the error can be dropped significantly. For example, the probability of being

wrong twice in a row would only be 1/4, three times in a row would be 1/8, etc. So, using

either of their algorithms allows someone to in polynomial time find out if a very large

number is prime or not (Dietzfelbinger 7-8).

 Before the 20th century people didn’t generally accept the idea of randomness.

Religion was a huge factor in this, but the development of natural sciences and mechanical

engineering also reassured people that everything could be explained by cause and effect.

Randomness was also connected with chaos, uncertainty and unpredictability, all things

that people related with fear. So, rejecting the possibility of randomness helped to ease

people’s fear about the chaos and uncertainty surrounding it. In the 19th and 20th centuries

with the discovery of both statistical and quantum mechanics, randomness became an

accepted phenomenon. As you can imagine it is extremely difficult to prove that

randomness does exist, and it is very unlikely that we will have an answer anytime soon.

But for computer scientists randomness is accepted not only because of physics but also

15

because randomness allows for great improvements in efficiency. It seems unlikely that

something that provides for such gains would be false (Hromkovic 206-209).

Complexity and Efficiency

Complexity theory is important in determining if an algorithm is efficient and

solvable. The goal of complexity theory is to determine the amount of resources needed to

carry out an algorithm which then allows us to classify problems as solvable and

unsolvable. The two main uses of a computer’s resources by an algorithm are time and

space. The time complexity of an algorithm is defined as the amount of work, or

fundamental instructions such as conditional and iterative operations, that the computer

must perform during the execution of the algorithm. It is important to note that when

fundamental operations are nested within each other that the time complexity of the

algorithm drastically increases. The space complexity of an algorithm is defined as the

amount of memory space that the algorithm uses which includes all the data that the

algorithm will operate on. An algorithm is efficient when as little resources as possible are

used to produce the result. So, when the time and space complexities are small the

algorithm is more efficient. When we have a complexity for two different algorithms it

allows us to estimate each of the algorithm’s runtime as well as compare the two

algorithms to determine which is the better option. Big O is an analysis tool to describe the

time and space complexity of an algorithm, it represents the upper bound of an algorithm’s

run-time. The lower the magnitude of Big O the more efficient the algorithm is (Schneider

95-96, 100-101).

16

While determining the time and space complexity of an algorithm is important,

complexity theory can also be used to determine if a problem is solvable or not. When an

algorithm to solve a problem has a time complexity less than or equal to some polynomial

function of input, we say the problem is solvable and lives in the complexity class P. P is a

set of problems that all satisfy this condition.

Problems that can’t be solved by algorithms with

time complexity less than or equal to a polynomial

function of input can be classified as hard. It is

important to note that even a slight change to a hard

problem’s constraints can cause it to become a

member of P and no longer be hard. This reduction

from being hard to being a member of P can be seen in graph theory with Hamiltonian

cycles and Eulerian cycles. A Hamiltonian cycle is a path around a graph that touches every

vertex only once, but a Eulerian cycle is a path around a graph that touches every edge only

once. Finding a Hamiltonian cycle is classified as a hard problem but by twisting the

problem statement and looking for a Eulerian cycle the problem now lives within the

complexity class P.

Algorithms for problems in P are easy to implement but the same is not true of hard

problems. When dealing with a hard problem, our goal is to find an algorithm, one without

unreasonable performance costs, to solve the problem and that is where randomized

algorithms become useful (Hromkovic 177, 179-180).

A Eulerian Cycle is 2 1 5 2 3 4 2 but there is

not a Hamiltonian Cycle in this graph.

17

As mentioned earlier from Motwani, randomized algorithms have smaller time

complexities than the best-known deterministic algorithms, but why is this? In short it is

because some randomized algorithms work to produce a solution that isn’t perfect but just

good enough. But in addition to randomized algorithms being very efficient, they can also

be more reliable than deterministic algorithms. This is because the probability of a

hardware error increases the longer an algorithm is running. So, a fast-randomized

algorithm can be more reliable than a slow deterministic algorithm because you are

reducing the probability of a hardware error. Thus, although you aren’t getting the perfect

answer you are getting an answer faster and more reliably (Hromkovic 202).

Monte Carlos vs. Las Vegas

Randomized algorithms can be classified into two groups based on how goals are

prioritized. The first type is a Monte Carlo algorithm which is a randomized algorithm

with a goal to produce a result in a small amount of time but doesn’t always produce the

right solution (although the probability of an incorrect solution can be bounded). One

important thing to note is that if a Monte Carlo algorithm is run many times, the probability

of an incorrect solution will become arbitrarily small. It is also important to note that to

reduce the probability of an incorrect solution, the run time of the algorithm gets longer.

One example that demonstrates the success of a Monte Carlo algorithm is estimating

the value of π. π is an irrational number meaning it is nonterminating and nonrepeating. So,

if we had attempted to get an exact value of π, the algorithm would literally go on forever.

Thus, it is important to get a value that is good enough instead of waiting forever.

18

In this method a circle with a radius of 0.5 is enclosed by a 1x1 box. Recall,

𝐴𝑐 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑖𝑟𝑙𝑒 = 𝜋𝑟2 𝐴𝑐 = 𝜋(.5)2 =
𝜋

4
 𝐴𝑠 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 = 𝑆2

𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝐴𝑠 = (1)2 = 1 𝑆 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑠𝑖𝑑𝑒

Then using a computer, a large amount of points are randomly distributed in the 1x1 box.

The number of points in the circle is compared to the total number of points. This ratio

should be very close to the ratio of the area of the circle and the square.

𝑃𝑖𝑛 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑃𝑖𝑛

𝑃𝑡𝑜𝑡𝑎𝑙
≈

𝐴𝑐

𝐴𝑠
 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑥

So,

As explained above, the computer randomly places

points in a designated region and can quickly and

easily find a value of π which isn’t perfect but is “good

enough;” the goal of a Monte Carlo randomization

algorithm (Estimating Pi Using the Monte Carlo

Method). In practice the value of π is not calculated in

this manner but this provides us with a good

illustration of a Monte Carlo algorithm.

A Las Vegas algorithm is another type of randomized algorithm, but the goal is to

always produce the correct solution. It is important to note that although a Las Vegas

𝜋

4
≈

𝑃𝑖𝑛

𝑃𝑡𝑜𝑡𝑎𝑙
 𝜋 ≈ (4)

𝑃𝑖𝑛

𝑃𝑡𝑜𝑡𝑎𝑙

There are 31 total dots in the circle and 40 total dots.

4 * (31/40) = 3.1 ≈ π

19

algorithm will always produce the correct solution, the amount of time it takes to get the

correct solution will vary with each run. A classic example of a Las Vegas algorithm is a

sorting algorithm called quickSort. QuickSort is an algorithm used to sort data in

ascending order. We will first cover how a quickSort algorithm operates and then discuss

how a randomized quickSort algorithm differs from that.

1. The first step in a quickSort algorithm is to select a data point to be the pivot. The

easiest way to do this is to select the first value as the pivot.

3 1 6 8 2 4 9 5 7

Pivot

2. Once the pivot has been selected, identifiers, called L for lower and U for Upper, are

added in at the first element after the pivot and the last element in the list.

3 1 6 8 2 4 9 5 7

 Pivot

 L

 U

3. The identifier L is moved to the right until it runs into a value that is larger then the

pivot.

3 1 6 8 2 4 9 5 7

 Pivot

 L

 U

4. The identifier U is moved to the left until it runs into a value that is smaller than the

pivot

3 1 6 8 2 4 9 5 7

 Pivot

 L

 U

20

5. If L is the left of U, i.e. L and U have not crossed each other, the values at L and U are

swapped. In this example the value 6 is moved from the 3rd spot to the 5th spot and

the value 2 is moved from the 5th spot to the 3rd spot.

6. Like what we did above continue moving L to the right until it encounters an

element larger than pivot. Then move U to the left until it encounters an element

smaller than the pivot.

3 1 2 8 6 4 9 5 7

 Pivot

 U

 L

7. At this point U is on the left of L, i.e. U and L have crosses, so the elements at U and

pivot are swapped.

2 1 3 8 6 4 9 5 7

 Pivot

8. Notice the pivot is now separating two lists of values. The values on the left of the

pivot are all values that are smaller than the pivot and the values on the right of the

pivot are all values larger than the pivot.

9. The steps above are repeated on each subsection, values smaller than pivot and

values larger than pivot, until a sorted list is produced.

So how does a quickSort algorithm become a randomized quickSort algorithm? Recall

that in the previous explanation the pivot was set to be the first element in the list. In a

randomized quickSort algorithm, the pivot is selected by randomly generating a number

and then using the value at that position in the list as the pivot.

 But what is the benefit of introducing randomization to the quickSort algorithm?

When a pivot is randomly selected it is very unlikely that one of the extremes will be

3 1 2 8 6 4 9 5 7

 Pivot

 L

 U

21

selected, most likely a value around the mean will be selected. And when this occurs, every

execution of the quickSort algorithm recursively splits the list into smaller near-equivalent

portions making the remaining work balanced rather than uneven. When the pivot is set to

the first element in the list, there is chance that the first element is an extreme. In the case

that the list is already sorted or sorted backwards, the pivot will always be an extreme and

the list won’t be split evenly. This causes the worst-case runtime of a quickSort algorithm

which is 𝑛2. Since randomly selecting the pivot drastically reduces the chances that an

extreme will be selected as the pivot every time the run time of a randomized quickSort

algorithm is likely be closer to the best-case of 𝑛 𝑙𝑜𝑔(𝑛) instead of the worst case 𝑛2. Refer

to the appendix for a deeper analysis of quickSort (Landman).

 A Las Vegas algorithm is said to be efficient if its expected run time is bounded by a

polynomial function of the input size. And a Monte Carlo algorithm is said to be efficient if

its worst-case run time is bounded by a polynomial function of the input size (Motwani 10).

One may be asking themselves which type of algorithm is better, but it depends on

the problem that the algorithm is trying to solve. Imagine you are on the Apollo 11 mission

to the moon and you need to recalculate your trajectory. Is it incredibly important to get

the correct answer and as such using anything but a Las Vegas algorithm could lead to

catastrophe. But suppose an answer that is good enough will suffice, then a Monte Carlo

algorithm should be used.

22

Academic Applications

Hashing

Computer scientists often deal with

large databases. Suppose there is a

database of all the phone numbers with a

614, Columbus, Ohio, area code. If someone

needs to search through the database or

add/ delete a phone number, we want an

efficient way to do this. Hashing, a type of data structure, provides an efficient way to do all

these operations by employing randomness when organizing the data.

Data is organized into a hash table using a hash function. A hash functions takes a key

and operates on it by pointing to the location of that element in the hash table. For a hash

function to have good performance we want a few things.

1. We want the keys to be spread out without making the hash table too much bigger

than the number of elements

2. We want the hash function to be simple

But when keeping the size of the hash table approximately the same size as the number

of elements, there is a higher probability that two keys will be mapped to the same location

in the hash table. Collisions are not ideal and one way to avoid them is to implement

randomization. A set of hash functions is said to be 2-universal if, when selecting a hash

function randomly, the probability that two nonequal elements will collide is less than or

Hash function that doesn’t have any collisions

23

equal to 1/M where M is the size of the hash table (Wagner). So, if a hash function is

randomly selected, independent of the keys that are going to be stored, from the 2-

Universal hash function family a similar phenomenon to that of the randomized quickSort

is observed. By selecting our hash function randomly, it guarantees that a certain input

won’t always produce the worst-case behavior. The user is guaranteed good average-case

performance for any input. The appendix proves a detailed proof of a 2-Universal set

(Cormen 232).

Random sampling

 If you have ever taken a course in statistics, you are surely familiar with random

sampling. But if you have never heard of random sampling, it is the process of taking a

group of subjects and randomly selecting a certain number of them. Random sampling is a

kind of randomized algorithm because the algorithm to choose subjects uses randomness.

Suppose that we are a group of researchers and we want to find out how many people in

the City of Los Angeles have a job where they earn over $100,000 a year. It would be very

time consuming and expensive to send a survey to every resident in the city. So instead we

randomly select a group of individuals to survey. By randomly selecting individuals we get

a smaller group of people that represent the city as a whole. So whatever conclusion we can

draw from the subjects that were surveyed, can be applied to the whole City of Los Angeles.

The algorithm to choose individuals uses randomness and as such it is a randomized

algorithm (Landman).

24

Pseudo Random Number Generator

 Throughout this text when referring to random number it was implied that these

values were truly random: the next random value to be produced couldn’t be predicted and

a series of numbers would only repeat if it were a complete accident. But it quite inefficient

to generate truly random numbers because it involves taking some physical phenomenon

and extract randomness from it. The simplest, but unrealistic, example would be to attach a

dice to a computer. Then whenever the user requests a random number the computer

would roll its dice and display the number that it rolled. But in reality, to generate truly

random values a computer has to examine some kind of physical phenomena such as

variations in mouse motion, radioactive decay, background noise or any other physical

phenomenon in the environment where the computer is at. Whatever physical

phenomenon is used the random number is generated by detecting small, unpredictable

changes in the data collected from the environment.

It is important to make sure that the physical phenomenon that is selected to

produce random numbers is itself random. For example, suppose that we are going to

generate random numbers by detecting the background noise in the office. The background

noise in an office is generally random but what if the fan on your computer running. A fan is

a consistent, rotating device and as such will introduce a non-random sound into your

environment. So, if we use this physical phenomenon, we can’t expect to get random values.

 To bypass the inefficiency that is the result of generating truly random numbers, a

computer will generate numbers that appear to random. They do this by using a

pseudorandom number generator which uses a precalculated table or an algorithm to

25

produce values. To produce a precalculated table of random numbers, one might roll a dice

a set amount of times and record the values that are produced in the computer. Then when

the user asks for a random value the next value in line is outputted. To the user the value

seems random but, in all reality, it was a predetermined value. The most common method

to compute pseudorandom number is to use a linear congruential generator. This method

uses an algorithm to produce the next random number from the seed (the starting value)

or the last calculated random number.

𝑟𝑛+1 = (𝑎 ∗ 𝑟𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚

𝑟0 = 𝑠𝑒𝑒𝑑 𝑟1, 𝑟2, 𝑟3 … = 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑎, 𝑐 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

Notice that for both methods although they are much more efficient than true

random number generators, they can reproduce a sequence of numbers if you know the

starting value and they will eventually repeat themselves. It is sometime helpful for the

user to be able to reproduce a sequence of values, but it is not beneficial for the sequence to

loop. Often though, the amount of values that it will take for the pseudorandom number

generator to repeat itself is so long that it can be ignored for most practical purposes.

Pseudorandom number generators are often used with simulation and modeling

applications but are not suitable for applications in which you need values that can’t be

predicted like in cryptology. Pseudorandom number generators are often used with

randomized algorithms to preserve their efficiency (Haahr).

26

Applications

 Thus far there have been numerous

examples of how randomized algorithms can

be used. Take the example where the value of

π was estimated using a Monte Carlo

algorithm. More realistic applications include

randomized quickSort to sort a large amount

of data or random sampling to draw conclusions about a population. Randomized

algorithms can be used in many ways, even to help to match people to facilitate kidney

transplants. Often when someone finds out that they will need a kidney transplant, friends

and family will offer to donate. But many times, it turns out that these people don’t end up

being matches for the patient. In 1986 Rapaport proposed matching incompatible patient-

donor pairs with other incompatible patient-donor pairs so that both patients received a

compatible kidney. In this scenario all pairs are happy in the end, the patient receives the

kidney they needed and the donor, although they didn’t directly donate to their

incompatible pair, enabled the donation by giving their kidney to another pair. The Kidney

Exchange Problem works to match incompatible patient-donor pairs with other pairs to

facilitate the most exchanges possible. There are some logistical issues that arise when

implementing this in real life. Ideally the amount of exchanges would be large to include

many incompatible patient-donor pairs. But to execute multiple exchanges would require

that all the operations be happening simultaneously. For one it is important to get the

organ out and into the next body as quick as possible. But in addition to this, if a donor’s

27

patient pair receives their kidney before they donate, they may be tempted to back out of

their donation. The donor has already received what they wanted, their patient pair to

receive a kidney, so why, other than moral integrity, would they feel inclined to go through

with their donation? But this presents the need for a huge surgical staff as well as space to

operate on and keep people for recovery after surgery. In general, the number of exchanges

in the Kidney Exchange Problem is bounded between 2 and 5. When the number of

exchanges is greater than or equal to 3, the Kidney Exchange Problem is considered NP-

Hard, the problem doesn’t have an algorithm with a polynomial bounded run time. Using a

randomized algorithm with the Kidney Exchange Problem where 3 or more exchanges are

involved has a better bound on runtime than any previous algorithm. While logistically it

would be difficult to perform a lot of exchanges, having a randomized algorithm that can

identify matches for many people increases the odds that a patient will receive the organ

they need (Lin).

Conclusion

 Randomness, something that used to be viewed as a negative because of its

association with chaos, now provides for great improvements in algorithms’ time and space

complexity. While the process to get truly random values can be difficult, algorithms that

use numbers that appear to be random still experience great leaps in efficiency. With

better, more efficient algorithms society spends less money on tasks such as conducting a

survey on the people of a city. Employers don’t have to pay an employee to search through

a database or match patients to donors; that money can be used in other more important

areas. Early scientists believed that the whole world was deterministic, free of chaos, but

28

with new discoveries, chaos and randomness are not only accepted phenomena, but used

to make algorithms more efficient.

29

Appendix

QuickSort Analysis

The expected performance of quickSort is

𝑇𝑎(𝑛) = 𝑛 +
1

𝑛
∑ 𝑇𝑎(𝑝 − 1) + 𝑇𝑎(𝑛 − 𝑝)

𝑛

𝑝=1

𝑛 = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑠𝑜𝑟𝑡

𝑝 = 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑣𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡

𝐵𝑎𝑠𝑒 𝐶𝑎𝑠𝑒𝑠: 𝐶𝑙𝑒𝑎𝑟𝑙𝑦 𝑖𝑓 𝑛 = 0 𝑜𝑟 𝑛 = 1 𝑇𝑎(𝑛) = 0

Explanation of the equation

- First term: The complexity of the partition is O(n). This means that it takes linear time to

place the pivot such that all that all elements smaller than it are to the left and all elements

larger than it are to the right.

- You multiple the recursive summation by
1

𝑛
 because you are finding the average

performance and there are n possibilities positions for the pivot.

- Inside the summation you are making recursive calls and applying this same equation to the

lower list, (p – 1), and the upper list (n – p).

o Note that for each recursive call you will look at all possible pivot positions

Solving the equation

𝑇𝑎(𝑛) = 𝑛 +
1

𝑛
∑ 𝑇𝑎(𝑝 − 1) + 𝑇𝑎(𝑛 − 𝑝)

𝑛

𝑝=1

(1)

Notice that

∑ 𝑇𝑎(𝑝 − 1)

𝑛

𝑝=1

 = ∑ 𝑇𝑎(𝑛 − 𝑝)

𝑛

𝑝 =1

(2)

Each summation goes from the first position to the length of the list. The first summation finds the

number of comparisons for a list of length 0, 1, 2, … up to n – 1. The second summation finds the

number of comparisons for a list of length n – 1, n – 2, … 1, 0. Thus they are equal, and we can

rewrite our equation

30

𝑇𝑎(𝑛) = 𝑛 +
2

𝑛
∑ 𝑇𝑎(𝑝 − 1)

𝑛

𝑝=1

(3)

Now multiplying by n

𝑛 ∗ 𝑇𝑎(𝑛) = 𝑛2 + 2 ∑ 𝑇𝑎(𝑝 − 1)

𝑛

𝑝=1

(4)

and substituting n – 1 for n we have

(𝑛 − 1) ∗ 𝑇𝑎(𝑛 − 1) = (𝑛 − 1)2 + 2 ∑ 𝑇𝑎(𝑝 − 1)

𝑛−1

𝑝=1

(5)

If we subtract equation 5 from equation 4, we obtain

𝑛𝑇𝑎(𝑛) − (𝑛 − 1)𝑇𝑎(𝑛 − 1) = 𝑛2 − (𝑛 − 1)2 + 2𝑇𝑎(𝑛 − 1)

(6)

Since the summation in equation 4 runs to n, we have one more term than the summation in equation 5

and thus that is why the last term is 2𝑇𝑎(𝑛 − 1). Simplifying the equation, we have

𝑛𝑇𝑎(𝑛) = (𝑛 + 1) 𝑇𝑎(𝑛 − 1) + 2𝑛 − 1

(7)

Next divide the equation by n (n + 1) and we obtain

𝑛𝑇𝑎(𝑛)

𝑛 (𝑛 + 1)
=

(𝑛 + 1) 𝑇𝑎(𝑛 − 1)

𝑛 (𝑛 + 1)
+

2𝑛

𝑛 (𝑛 + 1)
+

− 1

𝑛 (𝑛 + 1)

(8)

𝑇𝑎(𝑛)

(𝑛 + 1)
=

 𝑇𝑎(𝑛 − 1)

𝑛
+

2

(𝑛 + 1)
+

− 1

𝑛 (𝑛 + 1)

(9)

Dropping the last term creates the inequality

31

𝑇𝑎(𝑛)

(𝑛 + 1)
 ≤

 𝑇𝑎(𝑛 − 1)

𝑛
+

2

(𝑛 + 1)

(10)

Defining the equation

𝐹(𝑛) =
𝑇𝑎(𝑛)

𝑛 + 1

(11)

and substituting it in equation 10 we obtain

𝐹(𝑛) ≤ 𝐹(𝑛 − 1) +
2

𝑛

(12)

Expanding this equation, we get

𝐹(𝑛) ≤ 𝐹(𝑛 − 2) +
2

𝑛 − 1
+

2

𝑛

(13)

This is accomplished by taking 𝐹(𝑛) and substituting n - 1 for n.

𝐹(𝑛 − 1) ≤ 𝐹(𝑛 − 2) +
2

𝑛 − 1

Then plugging this equation of 𝐹(𝑛 − 1) back into 𝐹(𝑛) we obtain equation 13. Continuing in this

fashion we obtain

𝐹(𝑛) ≤ 2 (1 +
1

2
+

1

3
+ ⋯ +

1

𝑛 − 1
+

1

𝑛
)

 (14)

This is a partial harmonic series which can be written as

∑
1

𝑘

𝑛

𝑘=1

(15)

Which evaluates to

32

∫
1

𝑘

𝑛

1

= log 𝑛

(16)

In calculus, you probably learned that the above integral evaluates to ln 𝑛. But since the base of ln 𝑛 and

log 𝑛 only differs by a constant and constants have no weight in Big O, it is legal to say that the integral

evaluates to log 𝑛. Thus

𝐹(𝑛) 𝜖 𝛳 (log 𝑛)

(17)

Because of our definition of F(n) we have

𝐹(𝑛) =
𝑇𝑎(𝑛)

𝑛 + 1

𝑇𝑎(𝑛) = 𝐹(𝑛) ∗ (𝑛 + 1)

𝑇𝑎(𝑛) 𝜖 𝛳 (𝑛𝑙𝑜𝑔(𝑛))

(18)

Recall that constants don’t matter in Big O, which is why we drop the constant 1 (Stucki).

33

Euclid’s Extended Algorithm

I will quickly review Euclid’s Algorithm to find the greatest common divisor of two numbers.

Given two integers a and b you start by dividing a by b and label the remainder as r1. Now you will

divide the previous value of b by r1 and label this quotients remainder as r2. Continue in the fashion

until the remainder is zero. The GCD is the last non-zero remainder.

Ex. GCD(204, 15) = 3

a = 204
b = 15

__13_______
 15) 204
 - 195
 r1 = 9

204 = 15 ∗ 13 + 9

a = 15
b = 9

_ 1 ____
 9) 15
 - 9
 r2 = 6

15 = 9 ∗ 1 + 6

a = 9
b = 6

_ 1 ____
 6) 9
 - 6
 r3 = 3

9 = 6 ∗ 1 + 3

a = 6
b = 3

_ 2 ____
 3) 6
 - 6
 r4 = 0

6 = 3 ∗ 2 + 0

34

Here is a recursive implement of Euclid’s Algorithm in Java

import java.util.Scanner;

public class GCD {
 public static void main(String[] args) {
 System.out.println("GCD Calculator\t\tGCD(x, y)");
 Scanner in = new Scanner(System.in);
 //Allows the user to enter
 System.out.print("Enter the a value: ");
 int a = in.nextInt();
 System.out.print("Enter the b value: ");
 int b = in.nextInt();
 int GCD = greatestCommonDivisor(a, b);

 System.out.print("The GCD of " + a + " and " + b + " is " + GCD + ".");
 }

 //Method to recursively find the GCD
 public static int greatestCommonDivisor(int a, int b) {
 //If the remainder is zero, return the last non-zero remainder, b.
 if (a % b == 0) {
 return b;
 }
 /*
 * Recursively calls itself passing in the divisor (b) and the remainder
 * of the division (a/b)
 */
 else {
 return greatestCommonDivisor (b, a % b);
 }
 }
}

So now that we have reviewed what the Euclidean Algorithm is, we can look at the Extended Euclidean

Algorithm. This algorithm computes x and y values such that

𝐺𝐶𝐷(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦

We will prove that integers, x and y, exist later but first let’s see how to find the value of x and y with the

example above.

35

Step 1: Find the GCD (a, b).

GCD(204, 15) = 3

a = 204
b = 15

__13_______
 15) 204
 - 195
 9

204 = 13 ∗ 15 + 9 (1)

a = 15
b = 9

_ 1 ____
 9) 15
 - 9
 6

15 = 1 ∗ 9 + 6 (2)

a = 9
b = 6

_ 1 ____
 6) 9
 - 6
 3

9 = 1 ∗ 6 + 3 (3)

a = 6
b = 3

_ 2 ____
 3) 6
 - 6
 0

6 = 2 ∗ 3 + 0 (4)

Step 2: Take the last equation with a non-zero remainder (ie. the equation where the GCD is the

remainder) and rearrange the terms so that the GCD is on the left by itself. In our case this is equation 3.

9 = 1 ∗ 6 + 3 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3

3 = 9 − 1 ∗ 6 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑

Step 3: Notice the value of b in equation 3, 6, is the remainder in the previous equation, equation 2. So,

rewrite equation 2 in terms of its remainder (ie. the value of b in equation 3).

15 = 1 ∗ 9 + 6 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2

6 = 15 − 1 ∗ 9 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑

Step 4: Substitute rearranged equation 2 into the rearranged equation 3.

3 = 9 − 1 ∗ (15 − 1 ∗ 9)

Step 5: Distribute without multiplying values out and collect like terms, the 9’s.

3 = 2 ∗ 9 − 1 ∗ 15

36

Step 6: Notice the value of b in equation 2, 9 in our case, is the remainder in the previous equation,

equation 1 in our case. So, rewrite equation 1 in terms of its remainder (ie. the value of b in equation 3).

204 = 13 ∗ 15 + 9 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1

9 = 204 − 13 ∗ 15 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑

Step 7: Substitute rearranged equation 1 into our equation from step 5.

3 = 2 ∗ (204 − 13 ∗ 15) − 1 ∗ 15

Step 8: Distribute without multiplying values out and collect like terms, the 15’s.

3 = 2 ∗ 204 − 27 ∗ 15

Step 9: Notice that this equation contains the GCD on the left-hand side and the right-hand side is a

linear combination of our original values of a and b. We are done, we have found the value of x and y!

(Extended Euclidean Algorithm).

𝐺𝐶𝐷(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦

𝑥 = 2 𝑎𝑛𝑑 𝑦 = −27

You may have noticed a pattern. Starting with the equation that has the GCD as the remainder, you

continue up the chain of equations, rearranging them in terms of their remainder and substituting them

in until you have constants multiplied by the original values of a and b.

 Now that we have covered how to find the values of x and y, we will prove that these values exist. This

proof is formally named Bezout’s Identity.

Theorem: For nonzero integers a and b, let d be the greatest common divisor, d = gcd(a, b). Then, there exist

integers x and y such that ax + by = d.

Proof: First let’s consider the set 𝑆 = { 𝑠 > 0 | 𝑠 = 𝑎𝑥 + 𝑏𝑦 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥, 𝑦 𝜖 𝑍}, the set of positive linear

combinations. Clearly |a| + |b| > 0 as

𝑎 > 0 𝑎𝑛𝑑 𝑏 > 0 |𝑎| + |𝑏| = 1 ∗ 𝑎 + 1 ∗ 𝑏

𝑎 > 0 𝑎𝑛𝑑 𝑏 < 0 |𝑎| + |𝑏| = 1 ∗ 𝑎 + (−1) ∗ 𝑏

𝑎 < 0 𝑎𝑛𝑑 𝑏 > 0 |𝑎| + |𝑏| = (−1) ∗ 𝑎 + 1 ∗ 𝑏

𝑎 < 0 𝑎𝑛𝑑 𝑏 < 0 |𝑎| + |𝑏| = (−1) ∗ 𝑎 + (−1) ∗ 𝑏

So we know that it is a member of S and so S is non-empty. By the well ordering principle which states that

every non-empty set of positive integers contains a smallest element, S contains a smallest element. Suppose

that the smallest element is 𝑠0 = 𝑎𝑥0 + 𝑏𝑦0.

37

By the division algorithm we know there exists q, r 𝜖 Z such that 𝑎 = 𝑠0𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑠0. Note that

since 𝑟 < 𝑠0, 𝑟 ∉ 𝑆 𝑠𝑖𝑛𝑐𝑒 𝑠0 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆. Notice that rearranging our equation results in

𝑟 = 𝑎 − 𝑠0𝑞. Then substituting in for 𝑠0, distributing and rearranging terms we obtain

𝑟 = 𝑎 − (𝑎𝑥0 + 𝑏𝑦0) 𝑞 = 𝑎 (1 − 𝑥0𝑞) + 𝑏 (−𝑦0𝑞).

From this, it appears that r is in S since it is a positive linear combination of a and b. But we have already

established that it is not in S so for this to be the case, r must be zero. Thus 𝑎 = 𝑠0𝑞 and we can clearly see

that 𝑠0| 𝑎. Similarly, 𝑠0| 𝑏.

By definition of the greatest common divisor, we know that 𝑑 | 𝑎 and 𝑑 | 𝑏, and so we have

𝑑 | 𝑎𝑥0 + 𝑏𝑦0 = 𝑠0, 𝑖𝑒. 𝑑 |𝑠0. Note that 𝑑 ≤ 𝑠0 , by the definition of divisibility, but since 𝑠0|𝑎 𝑎𝑛𝑑 𝑠0|𝑏 it is

a common divisor. So, since d is the greatest common divisor and 𝑠0 is a common divisor that is greater

than or equal to d, d must equal 𝑠0. So substitute d in for 𝑠0 and we obtain 𝑑 = 𝑎𝑥0 + 𝑏𝑦0. 𝑆𝑜 𝑤𝑒 have an x

and y such that 𝑑 = 𝑎𝑥 + 𝑏𝑦 (Chen; AITKEN).

So, where has all this been going. There is something called the modular multiplicative inverse

which is used in cryptography. The modular multiplicative inverse of an integer a is an integer x

such that

𝑎𝑥 ≡ 1 (𝑚𝑜𝑑 𝑏)

and the Extended Euclidean Algorithm provides a very fast algorithm to find this integer x. It should

be noted that for a to have a modular multiplicative inverse the GCD(a, b) must be 1. We will work

through a simple example to demonstrate how to find a values modular multiplicative inverse.

38

Step 1: Confirm that the GCD(a,b) = 1 and find integers such that GCD(a, b) = ax + by (the Extended

Euclidean Algorithm)

GCD(13, 5) = 1

a = 13
b = 5

__2__________
 5) 13
 -10
 3

13 = 2 ∗ 5 + 3 (1)

a = 5
b = 3

_ 1 ____
 3) 5
 - 3
 2

5 = 1 ∗ 3 + 2 (2)

a = 3
b = 2

_ 1 ____
 2) 3
 - 2
 1

3 = 1 ∗ 2 + 1 (3)

a = 2
b = 1

_ 2 ____
 1) 2
 - 2
 0

2 = 2 ∗ 1 + 0 (4)

So, the GCD is 1. Now let perform the Extended Euclidean Algorithm. Refer to earlier in this section for

clarification on what is going on in each step.

1 = 3 − 1 ∗ 2 Equation 3 rearranged

2 = 5 − 1 ∗ 3 Equation 2 rearranged

1 = 3 − 1 ∗ (5 − 1 ∗ 3) Substitute equation 2 into equation 3

1 = 2 ∗ 3 − 1 ∗ 5 Simplify

3 = 13 − 2 ∗ 5 Rearrange equation 1

1 = 2 ∗ (13 − 2 ∗ 5) − 1 ∗ 5 Substitute it into the working equation

1 = 2 ∗ 13 − 5 ∗ 5 Simplify

39

This is a linear combination of a and b so we are done!

x= 2 and y = -5

Step 2: Now that we have found the solution to the extended Euclidean algorithm, we can move on to

finding the modular multiplicative inverse. First apply mod b on both sides of the equation we found

with the extended Euclidean algorithm, note that I have just rearranged terms to match the format

𝑎𝑥 + 𝑏𝑦 = 𝐺𝐶𝐷(𝑎, 𝑏)

 13 ∗ 2 + 5 ∗ −5 = 1

(13 ∗ 2 + 5 ∗ −5) (𝑚𝑜𝑑 5) ≡ 1 (𝑚𝑜𝑑 5)

Note that the term 5 * -5 (mod 5) will always be zero, any multiple of 5 will always be reduced to zero,

so we can drop this term. And we are left with

13 ∗ 2 ≡ 1 (𝑚𝑜𝑑 5)

𝑇ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑖𝑠 2.

Thus when the GCD(a, b) = 1, calculating the extended Euclidean algorithm and then applying mod b to

both sides reveals the modular multiplicative inverse (Ankur).

40

Constructing a 2-Universal Set of Hash Functions

First recall the definition of 2-Universal.

2-Universal: A collection H of hash functions h: {0, 1, … , 𝑀} → {0, 1, … , 𝑚 − 1} is said to be 2 –

Universal if for every 𝑥, 𝑦 𝜖 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ≠ 𝑦 has

𝑃𝑟[ℎ(𝑥) = ℎ(𝑦)] ≤
1

𝑚
.

Now we will construct a set of hash functions and prove that it is 2-Universal.

Theorem: Let ℎ𝑎𝑏 (𝑥) = (𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑚, 𝑤ℎ𝑒𝑟𝑒 𝑎 𝜖 𝑍𝑝 \ {0}, 𝑏 𝜖 𝑍𝑝 and p is a prime such

that 𝑝 ≥ 𝑚. Then {ℎ𝑎𝑏 } is 2 – Universal.

Proof: To prove that {ℎ𝑎𝑏 } is 2-Universal we first have to prove that for each distinct 𝑥, 𝑦 ∈

{0, … . , 𝑚 − 1}, the number of pairs of a and b such that ℎ𝑎,𝑏(𝑥) = ℎ𝑎,𝑏(𝑦) is at most
𝑝(𝑝−1)

𝑚

First let’s define 𝑔𝑎,𝑏(𝑥) = 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝).

When a collision occurs or ℎ𝑎,𝑏(𝑥) = ℎ𝑎,𝑏(𝑦) this means that there are values 𝑠, 𝑡 ∈ {0, … , 𝑝 − 1}

such that s = t (mod m) where 𝑔𝑎,𝑏(𝑥) = 𝑠 and 𝑔𝑎,𝑏(𝑦) = 𝑡. Let’s begin by counting the number of

these pairs.

It is important to note before we begin counting that 𝑔𝑎,𝑏(𝑥) ≠ 𝑔𝑎,𝑏(𝑦). If 𝑔𝑎,𝑏(𝑥) = 𝑔𝑎,𝑏(𝑦) then

𝑎𝑥 + 𝑏 = 𝑎𝑦 + 𝑏 (𝑚𝑜𝑑 𝑝)

𝑎(𝑥 − 𝑦) = 0 (𝑚𝑜𝑑 𝑝)

But 𝑎 ≠ 0 (𝑚𝑜𝑑 𝑝), from our definition of a being a member of the set {1, …, p-1}. So, this would mean

that (𝑥 − 𝑦) = 0 (𝑚𝑜𝑑 𝑝) 𝑜𝑟 𝑥 = 𝑦 (𝑚𝑜𝑑 𝑝). But this contradicts our assumption that x and y are

distinct. So it must be true that 𝑔𝑎,𝑏(𝑥) ≠ 𝑔𝑎,𝑏(𝑦). So we should never count a pair (s, t) where s = t.

We will say that a pair (s, t) with 𝑠, 𝑡 ∈ {0, … , 𝑝 − 1} is a valid pair if s = t (mod n) and 𝑠 ≠ 𝑡. Note

that there are p choices for s. So once we fix s, there are ⌈𝑝/𝑚⌉ values in {0,…, p-1} with s = t (mod n)

for t. Remember that we need to exclude the pair where s = t so we actually have ⌈𝑝/𝑚⌉ − 1 choices for

t. Finally, the total number of valid pairs is 𝑝(⌈𝑝/𝑚⌉ − 1).

Notice that ⌈𝑝/𝑚 ⌉ ≤ (𝑝 + 𝑚 − 1)/𝑚. So, we can rewrite our total number of valid pairs as

𝑝 (⌈
𝑝

𝑚
⌉ − 1) ≤ 𝑝 (

𝑝 + 𝑚 − 1

𝑚
−

𝑚

𝑚
) ≤ 𝑝 (

𝑝 − 1

𝑚
)

So, at most we have 𝑝 (
𝑝 − 1

𝑚
) valid pairs (s, t).

41

Now that we have valid pairs (s, t), we need to count the number of pairs (a, b) such that

𝑔𝑎,𝑏(𝑥) = 𝑠 (𝑚𝑜𝑑 𝑝) and 𝑔𝑎,𝑏(𝑦) = 𝑡 (mod p). Essentially, we are finding the number of solutions to

the system of equations for each valid pair (s, t). Remember that 𝑎, 𝑏 ∈ {0, … , 𝑝 − 1}

{
𝑎𝑥 + 𝑏 = 𝑠 (𝑚𝑜𝑑 𝑝)

𝑎𝑦 + 𝑏 = 𝑡 (𝑚𝑜𝑑 𝑝)
}

Notice that we have two equations and two unknowns. Since p is prime, we know that the solution is

unique. So, for each pair (s, t) we have a pair (a, b) with 𝑔𝑎,𝑏(𝑥) = 𝑠 and 𝑔𝑎,𝑏(𝑦) = 𝑡. Thus, we have at

most 𝑝 (
𝑝 − 1

𝑚
) pairs for (a, b) such that ℎ𝑎,𝑏(𝑥) = ℎ𝑎,𝑏(𝑦). Now recall that we have p(p-1) functions in

the family since we have p-1 choices for a and p choice for b. Thus, the probability that

ℎ𝑎,𝑏(𝑥) = ℎ𝑎,𝑏(𝑦) 𝑖𝑠 ≤
1

𝑚

So, from the definition of 2-Universal, we can see that our family of functions is indeed 2-Universal

(Wagner).

42

Bibliography

AITKEN. “BEZOUT’S IDENTITY, EUCLIDEAN ALGORITHM.” 2009.

Ankur. “Modular Multiplicative Inverse.” GeeksforGeeks, 23 Sept. 2019,
www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/.

Aspnes, James. Notes on Randomized Algorithms CPSC 469/569: Fall 2016. 19 Dec. 2016,
www.cs.yale.edu/homes/aspnes/classes/469/notes-2016.pdf.

Bradley, Larry. “Laplace's Demon.” Chaos & Fractals,
http://www.stsci.edu/~lbradley/seminar/laplace.html.

Burger. The Euclidean Algorithm and Diophantine Equations. California State University,

Fresno, zimmer.csufresno.edu/~lburger/Math149_diophantine%20I.pdf.

Chen, Jason. “Bezout's Identity on Linear Combinations.” Expii, www.expii.com/t/bezouts-
identity-on-linear-combinations-3397.

Cormen, Thomas H.., et al. Introduction to Algorithms. 2nd ed., The MIT Press, 2001.

Dietzfelbinger, Martin. Primality Testing in Polynomial Time: From Randomized Algorithms
to 'Primes Is in P'. Springer, 2004.

“Estimating Pi Using the Monte Carlo Method.” Academo, 2016.

“Extended Euclidean Algorithm.” Brilliant Math & Science Wiki,
brilliant.org/wiki/extended-euclidean-algorithm/.

Haahr, Mads. “Introduction to Randomness and Random Numbers.” RANDOM.ORG,
www.random.org/randomness/.

Hromkovic, Juraj. Algorithmic Adventures: From Knowledge to Magic. Springer, 2009.

Landman, Nathan, and Christopher Williams. “Randomized Algorithms.” Brilliant Math &
Science Wiki, brilliant.org/wiki/randomized-algorithms-overview/.

“Laplace's Demon.” Wikipedia, Wikimedia Foundation, 13 Oct. 2019,
https://en.wikipedia.org/wiki/Laplace's_demon.

Lin, Mugang, et al. Randomized Parameterized Algorithms for the Kidney Exchange Problem.
2019, pp. 1–13, Randomized Parameterized Algorithms for the Kidney Exchange

http://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/
http://www.random.org/randomness/

43

Problem, eds.b.ebscohost.com/eds/pdfviewer/pdfviewer?vid=6&sid=12cbd1f6-c6b1-
489f-a063-ab0278022704%40pdc-v-sessmgr04.

Motwani, Rajeev, and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

Schneider, G. Michael, and Judith L. Gersting. Invitation to Computer Science. 8th ed.,
Cengage Learning, 2019.

Stucki, David. “QuickSort Analysis.” Lecture Notes.

Wagner, David. “UC Berkeley CS170: Efficient Algorithms and Intractable Problems.” 25
Feb. 2003. https://people.eecs.berkeley.edu/~daw/teaching/cs170-
s03/Notes/lecture9.pdf.

	Randomized Algorithms and How Society Uses Them Everyday
	Recommended Citation

	tmp.1587713926.pdf.xDMKK

