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Abstract

The prime numbers have been an important field of research for thousands of years

and are intertwined with most other fields of mathematics. One topic that has piqued

the interest of mathematicians young and old is the Mersenne prime numbers, which

have applications in many mathematics and computer science fields. The Mersenne

primes get a lot of attention because there is not much known about them. However,

we do have a very simple primality test for Mersenne numbers, which is why the largest

currently known primes are Mersenne primes. These primes are also very closely related

to another class of numbers called the perfect numbers. In fact, every even perfect

number has an underlying Mersenne prime, and for every Mersenne prime we can

find an even perfect number. However there is still a major question that remains

unanswered: Are there an infinite number of Mersenne primes? In this paper we

outline the various known results regarding Mersenne prime numbers and how each of

these results helps us to move closer to finding the answer to this age old question.
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1 Introduction

Number theory is one of the oldest fields in mathematics and dates back to Pythagoras

and his school of thought around 550 BC. One of the first and most well-known theorems

in number theory is the Pythagorean theorem, which states that a2 + b2 = c2, where a and

b are legs of a right triangle and c is the hypotenuse. Over the years, number theory has

evolved and now houses some of the most famous mathematical problems. Examples include

the Goldbach conjecture, Twin Primes conjecture, and the Riemann hypothesis [6].

Number theory, and especially the study of prime numbers, is intertwined with many

other fields of mathematics. For example, the Riemann hypothesis is one of the most im-

portant conjectures in the field of analysis, but is also heavily rooted in number theory. The

Riemann hypothesis is closely related to the distribution of prime numbers, a topic that has

been raising many questions for hundreds of years [3].

Many cryptographic algorithms used for cybersecurity in the 21st century are also heavily

based off number theoretic topics. For example, the RSA encryption scheme, currently one of

the most commonly used cryptographic algorithms, is based on the hard problem of factoring

large numbers into their prime components.

In 1644, Marin Mersenne (1588-1648), a French monk, made the bold (and ultimately

false) assertion that the number 2n − 1 was prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127,

and 257 and that it was not prime for any other n < 257. However, it was not un-

til almost 300 years later in the early 1900s that the entire range of Mersenne’s con-

jecture had been completely tested. It was determined that the correct list is actually

n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127. It was for this reason that the primes of the

form 2n − 1 were dubbed the Mersenne primes [2].

Definition 1.1 (Mersenne Number). A number Mn is called a Mersenne number if it is of

the form Mn = 2n − 1 where n ∈ N
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Definition 1.2 (Mersenne Prime). A prime number Mp is called a Mersenne prime if it can

be written in the form Mp = 2p − 1 with prime p ∈ N, and p ≥ 2

This subset of the prime numbers is also very closely linked to another set of special

numbers, the perfect numbers (discussed more in section 6). Table 8.1 lists all of the currently

known Mersenne primes along with their corresponding perfect numbers. One of the most

pressing questions regarding the prime numbers has always been, just how many are there?

As it turns out, there are an infinite number of prime numbers (see theorem 2.1). So the

natural next question is, are there also an infinite number of Mersenne primes?

For hundreds of years mathematicians have puzzled over this question and attempted

to attack it from all angles, but to no avail thus far. In the past 200 years there has been

significant work done with the Mersenne primes in other ways. In December of 2018 the 51st

Mersenne prime was discovered. Specifically, we now have a relatively simply primality test

for any given Mersenne number along with a concrete characterization of the link between

the Mersenne primes and the even perfect numbers. As we move through our discussion

of the Mersenne prime numbers keep in mind this important question and consider how

each theorem has helped in the search for the answer about the infinitude of the Mersenne

primes.

2 Prime Numbers

Before we get into the theorems about Mersenne primes, it is important to first take a

brief look at general prime numbers.

Definition 2.1 (Prime Number). A prime number is a natural number p > 1 that is divisible

only by itself and 1.

In about 300 BC, Euclid proved that there are an infinite amount of prime numbers. This

was a very important discovery for mathematics. The Fundamental Theorem of Arithmetic

uses the fact that there are an infinite number of primes and tells us that every integer
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greater than 1 has a unique prime factorization. Thus we can see that the prime numbers

are the building blocks of mathematics. The prime numbers are interesting to study because,

as far as we know at this time, there is no pattern to their distribution, and thus we do not

have a way of generating the next prime.

Theorem 2.1. There are an infinite number of prime numbers.

Euclid’s proof. By way of contradiction, assume that there are a finite number of prime

numbers and that the list p1, p2, ..., pn is an exhaustive list of these primes. Let

N = p1 · p2 · . . . · pn + 1. Notice that N is not divisible by any of the primes in our list as

we will always have a remainder of one, that is
N

pi
= 1, ∀ i = 1, 2, . . . , n. Then we have two

options, either N is prime or it is composite. If N is prime then we have found a prime

number that was not on our list, a contradiction. If N is composite we know that it must

have prime factors by the Fundamental Theorem of Arithmetic. But we know none of our

primes p1, . . . , pn are factors. Thus there exists another prime that is a factor of N that is

not on our original list, a contradiction. Hence, there must be an infinite number of prime

numbers. �

Thus we know that there are infinitely many primes, but we also know that there are an

infinite number of some specific types of primes too. For instance, we know that there are

infinitely many primes congruent to 3 mod 4. The following proof of this fact is outlined in

chapter 12 of [7]. Before we prove this, note that all primes > 2 must be either 1 or 3 mod

4. If a prime p was congruent to 0 or 2 mod 4 then this would mean that 2 divides p and it

would not be prime.

Theorem 2.2. There are infinitely many primes congruent to 3 modulo 4.

Proof. By way of contradiction, suppose that we have a complete and finite list of all the

primes that are congruent to 3 modulo 4,

3, p1, p2, . . . , pr.
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Then let’s consider the number

N = 4p1p2 . . . pr + 3.

It is important to note here that we have not included the prime 3 in the product above.

Then we know that N can be factored into a product of primes,

N = q1q2 . . . qs.

First, we need to show that one of these q’s must be congruent to 3 modulo 4. If this was

not true then they all are congruent to 1 mod 4 and thus N is congruent to 1 mod 4. But

by the way that we have defined it, N is congruent to 3 mod 4. Thus at least one of the qs

has to be 3 mod 4, call this prime qi.

Second, we need to show that this qi was not on our original list. Because of how qi

has been found we know that it evenly divides N . However, notice that none of our original

primes p1, . . . , pr divided N . Thus qi is not from our original list and our list is not complete,

a contradiction. �

The proof that there are an infinite number of primes congruent to 1 mod 4 is very similar

to the above and thus we will not show it here. So we know that there are infinitely many

primes that are congruent to 1 or 3 mod 4. A natural next question is, are there other kinds

of primes that have this kind of structure? In fact there are! Dirichlet generalized this idea

in the 1830s. The proof for this theorem is unfortunately much too difficult to outline here,

so only the statement of this important theorem will be provided.

Theorem 2.3 (Dirichlet’s Theorem). Let a and m be integers with gcd(a,m) = 1, then there

are infinitely many prime numbers p such that p ≡ a mod m.

3 Introductory Topics

As we continue our exploration of the Mersenne primes, we must stop to prove some very

important and helpful theorems. The importance of these theorems may not be very clear
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at first but each of them will play a very important role as we work towards the primality

testing of Mersenne primes. In order to prove the theorems that may seem more important

and whose functions are more impressive, we must first lay our foundation by proving these

building blocks.

3.1 Fermat’s Little Theorem

Despite its misleading name, Fermat’s Little Theorem is a very important theorem in

number theory. This theorem not only gives us another way of looking at a prime p, but also

gives us a simple primality test for numbers of reasonably small size. For this reason, it was

one of the earliest efficient ways of primality testing. However before we can prove Fermat’s

Little Theorem, we must first prove an important lemma that will come up many times in

following sections. We will also need the following theorem, but since this is tangent to our

topic right now, the proof will be left for the reader’s exploration.

Theorem 3.1 (Prime Divisibility Property). Let p be a prime number, and suppose that p

divides the product a1a2 . . . ar. Then p divide at least one of the factors a1a2 . . . ar.

The proof of the above can be found in chapter 7 of [7] and the below can be found in

chapter 9 of [7].

Lemma 3.1. Let p be a prime number and let a be a number with a 6≡ 0 mod p. Then

the numbers a, 2a, 3a, . . . , (p − 1)a mod p are the same as the numbers 1, 2, 3, . . . , (p − 1)

mod p, although they may be in a different order.

Proof. The list a, 2a, 3a, . . . , (p− 1)a contains p− 1 numbers, and clearly none of them are

divisible by p. Suppose that we take two numbers ja and ka in this list, and suppose that

they are congruent mod p, so

ja ≡ ka mod p.

Then p|(j − k)a, so p|(j − k) by theorem 3.1 and since we are assuming that p does not

divide a. We know that
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1 ≤ j, k ≤ p− 1, so |j − k| < p− 1.

There is only one number with absolute value less than p−1 that is divisible by p, and that is

0. Thus, j = k. This shows that different multiples in the list a, 2a, 3a, . . . , (p−1)a are distinct

modulo p. So we know that the list a, 2a, 3a, . . . , (p − 1)a contains p − 1 distinct nonzero

values modulo p. But there are only p − 1 distinct nonzero values modulo p, those are the

numbers 1, 2, 3, . . . , (p−1). Hence, the list a, 2a, 3a, . . . , (p−1)a and the list 1, 2, 3, . . . , (p−1)

must contain the same numbers modulo p, although the numbers may appear in different

orders. �

Now that we have this lemma under our belt we can move on to the proof of Fermat’s

Little Theorem. This proof is from chapter 9 of [7].

Theorem 3.2 (Fermat’s Little Theorem). Let p be a prime number, and let a be any number

with a 6≡ 0 mod p. Then ap ≡ a mod p or equivalently, ap−1 ≡ 1 mod p

Proof. By lemma 3.1, we know that the lists a, 2a, 3a, . . . , (p−1)a and 1, 2, 3, . . . , (p−1) are

the same modulo p. Thus they have the same product, in other words

a(2a)(3a) . . . ((p− 1)a) ≡ 1 · 2 · 3 · . . . · (p− 1) mod p.

Next we reorganize the (p− 1) copies of a in the left hand side, resulting in

ap−1(p− 1)! ≡ (p− 1)! mod p.

Now observe that (p− 1)! is coprime to p, so we may cancel it from both sides to obtain

ap−1 ≡ 1 mod p. �

3.2 Quadratic Residues

We now consider another important question in number theory and some of its applica-

tions, when is a number a square modulo p? However, before we get into much discussion
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of this question we must lay out some definitions and notation that will be used throughout

the rest of the paper.

Definition 3.1 (Quadratic Residue (QR)). A nonzero number that is congruent to a square

modulo p is said to be a quadratic residue modulo p.

Definition 3.2 (Quadratic Nonresidue (NR)). A nonzero number that is not congruent to

a square modulo p is said to be a quadratic nonresidue modulo p.

Definition 3.3. The Legendre symbol of a modulo p is

(
a

p

)
=

 1 if a is a quadratic residue mod p

−1 if a is a nonresidue mod p

Quadratic Residues are an important topic in number theory, so it is not surprising that

they make an appearance in many results and proofs related to the Mersenne primes. We use

the Legendre symbol as a quantitative representation of whether a number a is a quadratic

residue mod p or not. Euler’s Criterion gives us another way of writing the Legendre symbol

of a number. This will prove to be essential further down the road as we look into more

complicated theorems. Before we get into this proof however, we must state two other

theorems that we will employ. Because these theorems are not directly related to our topic,

we will simply state their conclusions and leave the proofs for the reader to explore. The first

theorem here tells us exactly how many roots mod p there may be for a given polynomial.

The proof of this theorem can be found in chapter 8 of [7].

Theorem 3.3. Let p be a prime number and let

f(x) = a0x
d + a1x

d−1 + · · ·+ ad

be a polynomial of degree d ≥ 1 with integer coefficients and with p 6 |a0. Then the congruence

f(x) = 0 mod p
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has at most d incongruent solutions.

The next theorem tells us exactly how many quadratic residues and nonresidues we will

have for any given prime p. The proof of this theorem can be found in chapter 20 of [7].

Theorem 3.4. Let p be an odd prime. Then there are exactly
p− 1

2
quadratic residues

modulo p and exactly
p− 1

2
nonresidues modulo p.

Now we are ready to prove Euler’s criterion regarding the Legendre symbol of a number

mod p. This proof is outlined in chapter 21 of [7]. For clarity, throughout the rest of this

paper let P =
p− 1

2
, this notation will be used heavily in section 4 in particular.

Theorem 3.5 (Euler’s Criterion). Let p be an odd prime. Then

aP ≡
(
a

p

)
mod p, with a ∈ Z.

Proof. Suppose first that a is a quadratic residue, say a ≡ b2 mod p. Then by Fermat’s

Little Theorem (3.2) we know that

aP ≡ (b2)P = bp−1 ≡ 1 mod p.

Hence,

aP ≡
(
a

p

)
mod p,

Consider the congruence XP − 1 ≡ 0 mod p. We have just proven that every quadratic

residue is a solution to this congruence, and we know that there are exactly 1
2
(p−1) distinct

quadratic residues by theorem 3.4. From theorem 3.3 we know that this congruence can have

at most 1
2
(p− 1) distinct solutions. Hence,{

solutions to XP − 1 ≡ 0 mod p
}

= {quadratic residues modulo p}.

Now let a be a nonresidue. Fermat’s Little Theorem (3.2) tells us that ap−1 ≡ 1 mod p

so,
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0 ≡ ap−1 − 1 ≡ (aP − 1)(aP + 1) mod p.

The first factor is not 0 modulo p, because we already showed that the solutions to XP−1 ≡ 0

mod p are the quadratic residues. Hence the second factor must be 0 modulo p. Thus,

aP ≡ −1 =

(
a

p

)
mod p.

Thus the theorem holds true for all integers. �

4 Quadratic Reciprocity

One of the most well known and powerful theorems in number theory is the Law of

Quadratic Reciprocity. It gives us a concrete set of rules identifying if a prime q is a quadratic

residue mod p and thus what its Legendre symbol will be. This will be imperative for the

proof of the Lucas-Lehmer test in section 5. There are three distinct parts to this theorem.

The first part gives the conditions for when -1 is a QR mod p. The second part gives the

conditions for when 2 is a QR mod p. Lastly, the third, and most complicated, part gives us

the conditions for all other primes. Before we can fully dive into the proof of this theorem

we must prove some lemmas that are outlined in chapter 23 of [7]. You may notice as we

go through this section that many of these theorems seem to be stating things that are very

similar to each other. Each of these theorems gives us a slightly different way of looking at

the definitions we have. Later in section 5.3 and theorem 4.2 we will string many of these

theorems together in order to get the desired result from the information we have.

4.1 Lemmas

The first lemma we will look at gives us a new way of looking at the list of numbers

a, 2a, 3a, . . . , Pa. This will let us look at the number of negatives that we have once this list

is reduced into the given range, this value will come up many times in future proofs.

9



Lemma 4.1. Let a ∈ Z and a 6≡ 0 mod p. When the numbers a, 2a, 3a, . . . , Pa are reduced

modulo p into the range −P to P , the reduced values are ±1,±2, . . . ,±P in some order,

with each number appearing once with either a plus or minus sign.

Proof. Write each multiple ka as ka = pqk + rk with −P ≤ rk ≤ P .

Suppose that two of the rk values are either the same or negatives for each other. Say ri = erj

with e = ±1. Then,

ia− eja = (pqi + ri)− e(pqj + rj) = p(qi − eqj).

So, p|a(i− ej) but p is prime and a is not divisible by p, so then p|(i− ej). However,

|i− ej| ≤ |i|+ |ej| = i+ j ≤ P + P = p− 1.

So the only way for i− ej to be divisible by p is to have i− ej = 0. Since e = ±1 and i and

j are positive then i = j. Thus the numbers r1, r2, . . . , rP are all different, even if we change

their signs. Hence it follows that each of the numbers 1, 2, . . . , P with a plus or minus sign

appears exactly once in the list of numbers r1, r2, . . . , rP . �

Before we move on to our next lemma we need the following definitions

Definition 4.1. The floor function, denoted btc, is the largest integer n such that n ≤ t.

Definition 4.2. µ(a, p) is the number of integers in the list a, 2a, . . . , Pa that become neg-

ative when they are reduced modulo p into the interval from −P to P .

Notice that the floor function will effectively just truncate the decimal portion of the

number and leave the integer value. Now we are ready to proceed with the proof of our

second lemma that will help us prove the Law of Quadratic Reciprocity (4.2). This lemma

will give us another way of using µ(a, p) so that we can relate it better to the number of

points we can count. This will come up in theorem 4.2 as we will use a graphical approach

to the proof.

Lemma 4.2. Let p be an odd prime and a 6≡ 0 mod p be an odd integer. Then

10



∑⌊
ka

p

⌋
= µ(a, p) mod 2.

Proof. We write each multiple of ka as ka = pqk + rk with −P < rk < P .

Divide by p to obtain
ka

p
= qk +

rk
p
. Notice that

−1

2
< −1

2
+

1

2p
<
rk
p
<

1

2
− 1

2p
<

1

2
. Thus, −1

2
<
rk
p
<

1

2
.

Taking the floor of both sides we get

⌊
ka

p

⌋
=

 qk if rk > 0

qk − 1 if rk < 0

So adding the values for

⌊
ka

p

⌋
, k = 1, 2, . . . , P we get

P∑
k=1

⌊
ka

p

⌋
=

P∑
k=1

qk − µ(a, p) (4.0.1)

We need the sum of the qk’s mod 2. Reducing the formula ka = qkp+ rk mod 2 and using

the fact that a and p are both odd we get k = qk + rk mod 2. Thus,

P∑
k=1

k =
P∑
k=1

qk +
P∑
k=1

rk mod 2 (4.0.2)

But by lemma 4.1 we know that r1, r2, . . . , rP are equal to (±1)(±2)(±3) . . . (±P ) in some

order with each number appearing once with either a plus or minus sign. Since we are

working mod 2 the signs are not relevant. Therefore,

P∑
k=1

rk ≡ 1 + 2 + · · ·+ P mod 2.

Then the sums Σk and Σrk in Equation (4.0.2) are congruent mod 2. Hence,

P∑
k=1

qk ≡ 0 mod 2.

So reducing Equation (4.0.1) mod 2 we get
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P∑
k=1

⌊
ka

p

⌋
=

P∑
k=1

qk − µ(a, p) = µ(a, p) mod 2.

�

Gauss’s Criterion, like Euler’s Criterion (3.5) from above, gives us another way of looking

at the Legendre symbol of an equation. This time we are looking at it as it relates to µ(a, p).

Note that at this point you may begin to see how a lot of these theorems are going to string

together in order for us to relate two quantities that may be seemingly unrelated at first.

Theorem 4.1 (Gauss’s Criterion). Let p be an odd prime, let a be an integer 6≡ 0 mod p.

Then (
a

p

)
= (−1)µ(a,p).

Proof. Take the list of numbers a, 2a, . . . , Pa and multiply them together. Then the product

is,

a · 2a · . . . · Pa = aP (1 · 2 · 3 · . . . · P ) = aP · P ! (4.1.1)

By lemma 4.1 we know

a · 2a · . . . · Pa ≡ (±1)(±2)(±3) . . . (±P ) mod p

where the number of minus signs is µ(a, p). Then,

a · 2a · . . . · Pa ≡ (−1)µ(a,p)1 · 2 · 3 · . . . · P mod p ≡ (−1)µ(a,p)P ! mod p (4.1.2)

Combining equations (4.1.1) and (4.1.2) we see aPP ! ≡ (−1)µ(a,p)P ! mod p. Since P ! and p

are coprime, we may cancel P ! from both sides, yielding

aP ≡ (−1)µ(a,p) mod p.

But by theorem 3.5 we know

aP ≡
(
a

p

)
mod p.
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Thus

(
a

p

)
≡ (−1)µ(a,p) mod p. This means that

(
a

p

)
− (−1)µ(a,p) is divisible by p. But

this will only ever take the quantity 2, -2, or 0 while p ≥ 3. Then

(
a

p

)
− (−1)µ(a,p) = 0. �

4.2 The Law of Quadratic Reciprocity

Now we finally have all of the theorems we will need for the proof of the Law of Quadratic

Reciprocity. This theorem, as discussed above, will allow us in all cases to tell exactly what

the Legendre symbol of a number q will be mod p. There are three distinct cases that we

must handle in our proof: when q = −1, q = 2, or q is another odd prime number.

Theorem 4.2 (The Law of Quadratic Reciprocity). Let p and q be distinct odd primes.

PART I (
−1

p

)
=

 1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4

PART II (
2

p

)
=

 1 if p ≡ 1 mod 8

−1 if p ≡ 3 mod 8

PART III

(
q

p

)
=


(
p

q

)
if q ≡ 1 mod 4 or p ≡ 1 mod 4

−
(
p

q

)
if q ≡ 3 mod 4 and p ≡ 3 mod 4

4.2.1 Part I

We will start off with the case concerning -1 modulo p. Silverman outlines this proof in

chapter 21 of [7].

Proof: PART I. Theorem 3.5 says that (−1)P ≡
(
−1

p

)
mod p. First we will suppose p ≡ 1

mod 4 say p = 4k + 1. Then

(−1)P = (−1)2k = 1, so 1 ≡
(
−1

p

)
mod p.
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Thus if p ≡ 1 mod 4 then

(
−1

p

)
= 1.

Now suppose that p ≡ 3 mod 4 say p = 4k + 3. Then

(−1)P = (−1)2k+1 = −1, so −1 ≡
(
−1

p

)
mod p.

Just as above, this shows that

(
−1

p

)
must equal -1. �

4.2.2 Part II

Before we move on to the proof of Part II, we first define the procedure we will be using.

Starting with the even numbers 2, 4, 6, . . . , p− 1, we multiply these together. Factoring out

a 2 we get

2 · 4 · 6 · . . . · (p− 1) = 2P · 1 · 2 · 3 · . . . · P = 2P · P !.

Now we take the list 2, 4, 6, . . . , p − 1 and reduce them modulo p so that each number lies

between −P and P , that is, within the interval

[
−p− 1

2
,
p− 1

2

]
.

At some point in the list, namely
p− 1

2
, the values will become negative. Recall that

definition 4.2 speaks to this exact process and gives us some helpful notation. Thus we have

2P · P ! ≡ (−1)µ(2,p) · P ! mod p.

We can cancel P ! from both sides because gcd(P !, p) = 1. Then we have our fundamental

formula

2P ≡ (−1)µ(2,p) mod p.

Now for the proof of the case concerning 2. Note that there are four separate cases for

this part and that they will all follow the above outline. For this reason the reader is not

obliged to read through the details of each case as one will suffice to show the methodology.

The process outline from above, along with the cases for p ≡ 3 and p ≡ 7 mod 8, are from

chapter 21 of [7]. The proofs of the other two cases are original, but follow the same outline.
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Proof: PART II. Let p ≡ 7 mod 8, say p = 8k + 7. So the even numbers 2, 4, 6, . . . , p − 1

are the numbers from 2 to 8k + 6. The midpoint is P = 4k + 3 so the cutoff for when the

numbers will be negative by our process is between (4k + 2) and (4k + 4). Thus there are

2k + 2 numbers to the right of the cutoff because

8k + 6− (4k + 4) + 2

2
=

4k + 4

2
= 2k + 2. So µ(2, p) = 2k + 2. Thus,

2P ≡ (−1)µ(2,p) ≡ (−1)2k+2 ≡ 1 mod p. Then by theorem 3.5, we have that 2 is a quadratic

residue mod p.

Now let p ≡ 3 mod 8, say p = 8k + 3. The midpoint is P = 4k + 1. So the cutoff here

is between (4k) and (4k + 2). There are 2k + 1 numbers to the right of the cutoff because

8k + 2− (4k + 2) + 2

2
= 2k + 1. And thus µ(2, p) = 2k + 1. Therefore, 2P ≡ (−1)µ(2,p) ≡

(−1)2k+1 ≡ −1 mod p. Then by theorem 3.5, we have that 2 is a quadratic nonresidue mod

p.

Now let p ≡ 5 mod 8, say p = 8k + 5. Then just as before we find that in this case

µ(2, p) = 2k + 1. Thus 2P ≡ (−1)µ(2,p) ≡ (−1)2k+1 ≡ −1 mod p. Therefore by theorem 3.5,

2 is a quadratic nonresidue mod p.

Now let p ≡ 1 mod 8, say p = 8k + 1. Then as before we find that in this case

µ(2, p) = 2k. Thus 2P ≡ (−1)µ(2,p) ≡ (−1)2k ≡ 1 mod p. Therefore by theorem 3.5, 2 is a

quadratic residue mod p. �

4.2.3 Part III

Now for the third, and arguably most important, part. This part is the crux of the

theorem, allowing us to state for all other values of q exactly what its Legendre symbol will

be mod p. Note that we will be proving that(
p

q

)(
q

p

)
= (−1)µ(p,q)+µ(q,p) = (−1)

p−1
2
· q−1

2 ,

but this is equivalent to the original statement of the problem. The proof for this part is

from chapter 23 of [7]
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Proof: PART III. Let Q =
q − 1

2
and T (q, p) be the triangle in the xy-plane whose vertices

are the points
(

0, 0
)
,
(p

2
, 0
)

and
(p

2
,
q

2

)
(Figure 4.1).

We will count the integer points in T (q, p) with x = 1 then x = 2, and so on. Notice that

the hypotenuse of the triangle lies on the line y =
q

p
x. Then for x = 1 we have

⌊
q

p

⌋
points,

for x = 2 we get

⌊
2q

p

⌋
points and so on. Thus,

N = (The number of points with integer coordinates in T (q, p)) =
P∑
k=1

⌊
kq

p

⌋
.

(
0,0
) (p

2
, 0
)

(p
2
,
q

2

)

Figure 4.1: Integer Points in T(q,p)

Next let T ′(p, q) be the triangle with vertices
(

0, 0
)
,
(

0,
q

2

)
, and

(p
2
,
q

2

)
(Figure 4.2).

We count these integer points horizontally. By the same process as above we find

M = (The number of points with integer coordinates in T ′(p, q)) =

Q∑
k=1

⌊
kp

q

⌋

16



(
0,0
)

(
0,
q

2

) (p
2
,
q

2

)

Figure 4.2: Integer Points in T ′(p, q)

This along with lemma 4.2 gives us

N +M =

Q∑
k=1

⌊
kp

q

⌋
+

P∑
k=1

⌊
kq

p

⌋
= µ(p, q) + µ(q, p) mod 2. (4.2.1)

Consider the rectangle formed by putting these two triangles together (Figure 4.3). It

has vertices
(

0,0
)

,
(

0,
q

2

)
,
(p

2
, 0
)

, and
(p

2
,
q

2

)
.
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T ′(p, q)

T (q, p)

(
0, 0
) (p

2
,0
)

(p
2
,
q

2

)(
0,
q

2

)

Figure 4.3: The Rectangle Formed From T (q, p) and T ′(p, q)

This rectangle contains

⌊
p

2

⌋
columns of integer points and

⌊
q

2

⌋
integer points in each

column. Let X be the number of integer points in the rectangle. Then,

N +M = X =

⌊
p

2

⌋
·
⌊
q

2

⌋
=
p− 1

2
· q − 1

2
. (4.2.2)

Combining equations (4.2.1) and (4.2.2) we get

µ(q, p) + µ(p, q) ≡ p− 1

2
· q − 1

2
mod 2.

Hence by theorem 4.1,(
p

q

)(
q

p

)
= (−1)µ(p, q) · (−1)µ(q, p) = (−1)µ(p,q)+µ(q,p) = (−1)

p−1
2
· q−1

2 . �

5 Lucas-Lehmer Test

Now that we have proven the Law of Quadratic Reciprocity, we have the major tools we

need to prove the Lucas-Lehmer test. The Lucas-Lehmer test is a test for the primality of a

Mersenne number. When this was proven in 1856 (and subsequently improved upon in 1877
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and the 1930s) it was a groundbreaking find in the field of number theory. Because of this

test, we can now know if a Mersenne number is prime much easier than ever before. For

this reason, all of the largest prime numbers known are also Mersenne primes. Before we are

quite ready to prove this big theorem we still have just a couple more helper theorems that

we will employ in our proof of the test later.

5.1 Related Theorems

The Binomial mod p theorem, while not expressly related to Mersenne primes, is a

theorem that we will employ in the proof of the Lucas Lehmer test. For this reason, we

include it here. Sometimes this proof can seem a bit deceptive. If you are having a hard

time believing this proof, write out a few small examples and it should become readily

apparent.

Theorem 5.1 (Binomial mod p Theorem). Let p be a prime number and x, y be any integers.

Then (x+ y)p = xp + yp mod p.

Proof. (x+ y)p =

(
p

0

)
xpy0 +

(
p

1

)
xp−1y +

(
p

2

)
xp−2y2 + · · ·+

(
p

p− 1

)
xyp−1 +

(
p

p

)
x0yp.

Notice that, (
p

0

)
=

(
p

p

)
= 1 and

(
p

1

)
=

(
p

p− 1

)
= p.

Also, p divides

(
p

k

)
where 0 < k < p. Then when we take the first equation modulo p we

get

(x+ y)p ≡ xp + yp mod p. �

This next theorem is a general characterization of what Mersenne numbers look like.

While the theorem has been known for a long time, this version of the proof is original.

Theorem 5.2. For any Mersenne number Mn ≡ 7 mod 12 for odd n > 1.

19



Proof. First, note that 2n ≡ 4 or 8 mod 12. Now we claim that when n is odd, according

to our assumption, then it is ≡ 8 mod 12, ∀ k ≥ 1. Let n = 2k + 1. We will show that

22k+1 ≡ 8 mod 12. We proceed by induction.

Let k = 1. Then

22k+1 ≡ 22·1+1 ≡ 23 ≡ 8 mod 12.

Now assume this holds for k, we will prove it holds for k + 1.

22(k+1)+1 ≡ 22k+2+1 ≡ 22k+3 ≡ 22k+1 · 22 ≡ 8 · 4 ≡ 8 mod 12.

Therefore 2n ≡ 8 mod 12 =⇒ 2n − 1 ≡ 7 mod 12 �

This corollary can be very clearly seen from the above theorem, but we will prove it here

for extra clarity. As you will see in theorem 5.3 this corollary is actually what we will employ.

Corollary 5.1. All Mersenne numbers Mn ≡ 3 mod 4 for odd n > 1.

Proof. Let Mn be a Mersenne number with n > 1 and odd. Then by the above, Mn ≡ 7

mod 12 and by definition, Mn = 12k + 7 for some k ∈ N. Taking both sides modulo 4 gives

Mn ≡ 3 mod 4. �

5.2 Proof of the Lucas-Lehmer Test

We are now finally ready to begin our discussion of the Lucas-Lehmer test. We start by

defining a recursive relation. This relation is actually what will allow us to determine the

primality of a given Mersenne number.

Definition 5.1 (Lucas-Lehmer Recursive Relation).

si =

 4 if i = 0

s2i−1 − 2 otherwise
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Next we must prove a short lemma about the recurrence relation itself as well as define

some notation for ease and clarity throughout the proof of the theorem. J. W. Bruce outlines

the proof of the following lemma in [1].

Lemma 5.1. let ω = 2 +
√

3 and ω = 2−
√

3, then si = ω2i + ω2i ∀ i

Proof. First notice that 〈si〉 is a recurrence relation with a closed form solution. We proceed

by induction. If i = 0 we have,

s0 = ω20 + ω20 = (2 +
√

3) + (2−
√

3) = 4.

Now assume this holds true for n− 1, we will prove it is true for n.

First notice that (ωω) = (2 +
√

3)(2−
√

3) = 1.

sn = s2n−1 − 2

= (ω2n−1

+ ω2n−1

)2 − 2

= ω2n + 2(ωω)2
n−1

+ ω2n − 2

= ω2n + ω2n + 2− 2

= ω2n + ω2n thus,

si = ω2n + ω2n ∀ i. �

Now that we have all our notation defined and this lemma under our belt we can finally

prove the Lucas Lehmer test. Since the statement of this theorem is quite simple, it may be

difficult to see its importance. This test gives us a precise way to test if a Mersenne number

is prime by looking at only one number, namely sp−2. Even though by lemma 5.1 we know

the closed form solution to the relation, it still takes a lot of time to test large numbers

because of the extremely large exponential calculations involved.

Theorem 5.3 (Lucas-Lehmer Test). Mp is prime ⇐⇒ sp−2 ≡ 0 mod Mp, p > 2.
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Proof. (⇐= ) Suppose sp−2 ≡ 0 mod Mp. Then ω2p−2
+ ω2p−2 ≡ 0 mod Mp by lemma 5.1.

Therefore,

ω2p−2

+ ω2p−2

= kMp for some integer k. Thus,

ω2p−2

= kMp − ω2p−2

(ω2p−2

)2 = ω2p−2

(kMp − ω2p−2

)

(ω2p−2

)2 = kMpω
2p−2 − (ωω)2

p−2

ω2p−1

= kMpω
2p−2 − 1 by lemma 5.1 (5.3.1)

By way of contradiction, suppose Mp is composite and let q be the smallest prime factor of

Mp. Since Mersenne numbers are odd we have q > 2. Define the set X =
{
a+ b

√
3|a, b ∈ Zq

}
with q2 elements, where Zq is the integers mod q. Define the multiplication operation in X

as

(a+ b
√

3)(c+ d
√

3) =
[
(ac+ 3bd) mod q

]
+
[
(bc+ ad) mod q

]√
3.

Since q > 2, ω and ω are in X. Any product of two numbers in X will be in X. However

it is not a group under multiplication because not every x ∈ X has an inverse x−1 ∈ X such

that x ·x−1 = x−1 ·x = 1. If we consider only the elements that have inverses, we get a group

X∗ of at most q2 − 1 elements, because 0 has no inverse.

Since Mp ≡ 0 mod q and ω ∈ X, we have that kMpω
2p−2

= 0 in X for some integer k.

Then by equation (5.3.1) we have ω2p−1
= −1.

Squaring both sides gives ω2p = 1, showing that ω is invertible with inverse ω2p−1
, because

ω ∗ ω2p−1
= ω2p = 1. Thus ω ∈ X∗ and has order dividing 2p. Actually the order must be

equal to 2p because ω2p−1 6= 1 by above. Then the order does not divide 2p−1. Since the

order of an element is at most the order of the group, we conclude that

2p ≤ q2 − 1 < q2.

But since q is the smallest prime factor of the composite Mp, we must have
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q2 ≤Mp = 2p − 1.

Therefore, 2p < 2p − 1, a contradiction. Hence, Mp is prime.

Suppose Mp is prime, we will show sp−2 ≡ 0 mod Mp. Notice that 3 is a quadratic

non-residue mod Mp, since by corollary 5.1, 2p− 1 for odd p > 1 only is congruent to 3 mod

4. Then by legendre symbol properties,

(
3

Mp

)
= −1. Theorem 3.5 gives us 3(Mp−1)/2 ≡ −1

mod Mp. Also notice that 2 is a quadratic residue mod Mp, since 2p ≡ 1 mod Mp and thus

2 ≡ 2p+1 ≡ (2(p+1)/2)2 mod Mp.

Theorem 3.5 gives us 2(Mp−1)/2 ≡ 1 mod Mp.

Define σ = 2
√

3 and X∗ as we did before as the multiplicative group of{
a+ b

√
3|a, b,∈ ZMp

}
. Then in the group X∗ we have

(6 + σ)Mp = 6Mp + 2Mp(
√

3
Mp

) by theorem 5.1

= 6 + 2(
√

3
Mp

) by theorem 3.2

= 6 + 2(3(Mp−1)/2)
√

3

= 6 + 2(−1)
√

3

= 6− σ.

We chose this σ such that ω = (6 + σ)2/24. Notice that

24(Mp−1)/2 = (2(Mp−1)/2)3(3(Mp−1)/2) = (1)3(−1) = −1.
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Therefore, we can use this to help compute ω(Mp+1)/2 in X∗

ω(Mp+1)/2 =
[
(6 + σ)(Mp+1)/2

]2
/24(Mp+1)/2

= (6 + σ)(Mp+1)/24(Mp+1)/2

= (6 + σ)Mp(6 + σ)/(24 · 24(Mp−1)/2)

= (6− σ)(6 + σ)/(−24)

= 24/(−24)

= −1

Thus, ω(Mp+1)/2 ≡ −1 in X∗.

Since Mp ≡ 3 mod 4 by corollary 5.1, we multiply both sides of the above equation by

ω(Mp+1)/4 and use the fact that ωω = 1. Thus,

ω(Mp+1)/2ω(Mp+1)/4 = −ω(Mp+1)/4

ω(Mp+1)/4 = −ω(Mp+1)/4

ω(Mp+1)/4 + ω(Mp+1)/4 = 0

ω(2p−1+1)/4 + ω(Mp+1)/4 = 0

ω(2p/4) + ω(2p/4) = 0

ω2p−2

+ ω2p−2

= 0

sp−2 = 0 by lemma 5.1.

Since sp−2 is an integer and is 0 in X∗, it is 0 mod Mp. �

We now take a moment to review what has been shown up to this point and why it is

significant. We have just proved a test that will allow us to see if a Mersenne number is prime

with relative ease compared to the primality tests we had before. This is one of the reasons

why the number of Mersenne primes as well as the value of the largest prime has increased
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greatly in the past 100 years. Of course the ever looming question about the infinitude of

the Mersenne primes continues to lay unanswered, but the search has only been helped by

this monumental test.

6 Perfect Numbers

We now turn our attention to another set of numbers that could potentially help in our

search for the answer about the infinitude of the Mersenne primes, the perfect numbers.

Definition 6.1 (Perfect Number). A number n is called a perfect number if the sum of its

proper divisors is equal to itself.

The first few even perfect numbers are 6, 28, 492, 8128, 33550336, and 8589869056. Upon

first glance it may seem that there is no structural pattern to these numbers, however this is

certainly not the case. The set of perfect numbers is actually very closely linked to the set of

Mersenne prime numbers. In fact, for every Mersenne prime we have, we have a formula that

will give us a perfect number “for free”. See Table 8.1 for a full list of the Mersenne primes

and their related perfect numbers. Before we start looking at the relationship between these

two kinds of special numbers we must first discuss a special function that we will use in the

following proofs.

6.1 Sigma Function

Definition 6.2. σ(n) is the sum of all divisors of n (including 1 and n).

This function holds some special properties that we will now prove that are essential for

its various uses. Silverman states the theorem and sets up the idea behind part (b) as well

as the proof of part (a) in chapter 15 of [7], however the proof of part (b) is original.

Theorem 6.1. (Sigma Function Formulas) (a) If p is prime and k ≥ 1, then

σ(pk) = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1
.
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(b) If gcd(m,n) = 1, then

σ(mn) = σ(m)σ(n).

Proof. (a) Notice that σ(p) = p + 1 because the only divisors of a prime number are itself

and 1. We can easily see that in general the only divisors of a prime power are the powers

of that prime below itself. Namely the numbers,

1 + p+ p2 + · · ·+ pk.

Thus it is clear that

σ(pk) = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1

by the geometric partial sum formula.

(b) Let m,n ∈ N and gcd(m,n) = 1. Suppose x1, x2, . . . , xr are all the divisors of m and

y1, y2, . . . , ys are all the divisors of n. Let j|mn. If j|m, then j = xi for some i. If j|n then

j = yk for some k. Suppose that gcd(j,m) = d but j does not divide m. Notice that d = xi

for some i as it is a divisor of m. We have j = da with a ∈ N and m = db with b ∈ N. Note

that gcd(a, b) = 1 because if it was anything else then the gcd(j,m) 6= d. Thus a and b are

coprime. So if we substitute into j|mn we have that da|dbn =⇒ a|bn and thus a|n. Note

that this means that a = yk for some k as it is a divisor of n. Hence we have j = da = xiyk

for any divisor j of mn. Furthermore, since m and n are coprime we know that each of the

products of divisors is unique. Thus, the divisors of mn are

x1y1, x1y2, . . . , x1ys, x2y1, x2y2, . . . x2ys, . . . , xry1, xry2, . . . , xrys.

So,

σ(mn) = x1y1 + x1y2 + · · ·+ x1ys + · · ·+ xry1 + xry2 + · · ·+ xrys

= x1(y1 + y2 + · · ·+ ys) + x2(y1 + y2 + · · ·+ ys) · · ·+ xr(y1 + y2 + . . . ys)

= (x1 + x2 + · · ·+ xr)(y1 + y2 + · · ·+ ys)

= σ(m)σ(n). �
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Now that we have these operations regarding the σ function we can look at the relation-

ship between the Mersenne primes and the even perfect numbers.

6.2 Proof of the Relationship

This theorem gives us a rigorous way of looking at the structure of an even perfect number

and how the underlying Mersenne prime plays its role. Silverman proves this in chapter 15

of [7], however it was originally proved by Euler in the 18th century.

Theorem 6.2. If n is an even perfect number, then n is of the form

n = 2p−1(2p − 1)

where 2p − 1 is a Mersenne prime.

Proof. Suppose that n is an even perfect number. Since n is even we know we can factor it

as n = 2km with k ≥ 1 and m odd.

Next we will use the sigma formulas to compute σ(n).

σ(n) = σ(2km) since n = 2km

= σ(2k)σ(m) using our multiplication property and that gcd(2k,m) = 1

= (2k+1 − 1)σ(m) using the formula for σ(pk) with p = 2

But n is supposed to be perfect, which means that σ(n) = 2n = 2k+1m. So we have two

different expressions for σ(n) and they must be equal,

2k+1m = (2k+1 − 1)σ(m).

The number 2k+1 − 1 is clearly odd, and (2k+1 − 1)σ(m) is a multiple of 2k+1, so 2k+1 must

divide σ(m). Thus we know there exists some number c such that σ(m) = 2k+1c. We can

substitute this into the above equation to get

2k+1m = (2k+1 − 1)σ(m) = (2k+1 − 1)2k+1c,
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and then canceling 2k+1 from both sides gives us m = (2k+1 − 1)c. So we know that there

exits an integer c such that

m = (2k+1 − 1) and σ(m) = 2k+1c.

We are going to show that this integer c must be equal to 1 by assuming that c > 1. Suppose

that c > 1. Then m = (2k+1 − 1)c would be divisible by the distinct numbers 1, c, and m.

Of course it is possible that m itself is divisible by many other number. In any case we see

that,

σ(m) ≥ 1 + c+m = 1 + c+ (2k+1 − 1)c = 1 + 2k+1c.

However, we also know that σ(m) = 2k+1c, so

2k+1c ≥ 1 + 2k+1c.

Hence 0 ≥ 1, a contradiction. Thus our assumption was wrong and c = 1. Thus,

m = (2k+1 − 1) and σ(m) = 2k+1 = m+ 1.

From this we see that m must be prime, because σ(m) = m + 1 exactly when m is prime.

Thus we have proved that if n is an even perfect number then

n = 2k(2k+1 − 1) with 2k+1 − 1 a prime number.

But we know that if 2k+1− 1 is prime then k+ 1 is prime, so let k+ 1 = p. Then every even

perfect number is of the form n = 2p−1(2p − 1) with 2p − 1 a Mersenne prime. �

The next theorem allows us to go the other way, giving us a formula for finding even

perfect numbers given a Mersenne prime. This, coupled with the above, is a very powerful

result that shows clearly just how closely related the Mersenne primes and the perfect num-

bers are. Like the above theorem, Silverman proves this one in chapter 15 of [7], however it

was also originally proved by Euler in the 18th century.

Theorem 6.3. If 2p − 1 is a prime number, then 2p−1(2p − 1) is a perfect number.
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Proof. For ease of notation, let q = 2p − 1. Then we need to verify that 2p−1q is a perfect

number. Notice that the proper divisors of 2p−1q can be split into two groups:

1, 2, 4, . . . , 2p−1 and q, 2q, 4q, . . . , 2p−2q.

We can add these numbers together using the formula for a Geometric Series. If we rearrange

the formula slightly we have,

1 + x+ x2 + · · ·+ xn−1 =
xn − 1

x− 1
.

Then substitute x = 2 and n = p in the above formula we get,

1 + 2 + 4 + · · ·+ 2p−1 =
2p − 1

2− 1
= 2p − 1 = q. (6.3.1)

Also, we can use the formula to compute

q + 2q + 4q + · · ·+ 2p−2q = q(1 + 2 + 4 + · · ·+ 2p−2)

= q

(
2p−1 − 1

2− 1

)
q + 2q + 4q + · · ·+ 2p−2q = q(2p−1 − 1). (6.3.2)

Then, combining equations 6.3.1 and 6.3.2 we get

1 + 2 + 4 + · · ·+ 2p−1 + q + 2q + 4q + · · ·+ 2p−2q = q + q(2p−1 − 1)

= q + q2p−1 − q

= q2p−1.

Hence, 2p−1q is a perfect number. �

Now that we have these two theorems under our belt, we have a solid and clearly charac-

terized relationship between the Mersenne primes and the even perfect numbers. Because of

the Lucas-Lehmer test (theorem 5.3) it is much easier at this time to find Mersenne primes
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than it is for use to find even perfect numbers. Since these theorems tell us exactly how to

get an even perfect number given a Mersenne prime and vice versa. If it were determined

that there was an infinite amount of either kind of number we would automatically also know

that there was an infinite amount of the other as well.

7 Open Problems and Further Research

While we know quite a bit about the prime numbers, Mersenne primes, and perfect

numbers, there are still many open problems in this field. One of the most well known open

problems in number theory is the Riemann Hypothesis (which is unfortunately much too

complicated to even state here). This conjecture has been around for over a hundred years

and relates to many other fields of mathematics as well. In the fall of 2018, Michael Atiyah

claimed to have proven this 160 year old hypothesis. However, the proof that he gave was

quickly picked apart and is not accepted by the mathematical community as a whole.

Mathematicians have also been trying for years to find a nice pattern to the primes or to

characterize the distribution of the primes. Along with this comes the question of if there

are an infinite number of Mersenne primes as well as we have discussed throughout this

paper. So far there has been significant work done on both of these problems, however with

no proofs resultant as of yet. Another major open problem is the Twin primes conjecture,

which hypothesises that there are an infinite number of pairs of primes that differ by two.

Such pairs of primes are called twin primes. Interestingly, it is thought that progress on

this conjecture may also help with the Riemann Hypothesis [4]. We also still do not know if

there are any odd perfect numbers. Mathematicians have attempted to find an odd perfect

number for over 2000 years with no luck thus far.

Thus it is clear that while we know a good deal about prime numbers and the Mersenne

primes, there is a lot to still investigate. The prime numbers have baffled mathematicians for

several hundred years and this will likely be the case for hundreds more. They have always
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attracted a great amount of research, perhaps now more than ever before. However some

questions still remain unsolved. The mystery of the Mersenne primes, ever so elusive, will

likely continue on for many years to come.
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8 Appendix

Table 8.1 (following page) gives a complete list of the known Mersenne primes at the time

of publishing, along with their associated perfect numbers, the date they were discovered,

and who discovered them (information from [5]). The * denotes that it has not been verified

that this is the “next” Mersenne prime.

8.1 Definitions

Definition 1.1 (Mersenne Number). A number Mn is called a Mersenne number if it is of

the form Mn = 2n − 1 where n ∈ N

Definition 1.2 (Mersenne Prime). A prime number Mp is called a Mersenne prime if it can

be written in the form Mp = 2p − 1 with prime p ∈ N, and p ≥ 2

Definition 2.1 (Prime Number). A prime number is a natural number p > 1 that is divisible

only by itself and 1.

Definition 3.1 (Quadratic Residue (QR)). A nonzero number that is congruent to a square

modulo p is said to be a quadratic residue modulo p.

Definition 3.2 (Quadratic Nonresidue (NR)). A nonzero number that is not congruent to

a square modulo p is said to be a quadratic nonresidue modulo p.

Definition 3.3. The Legendre symbol of a modulo p is

(
a

p

)
=

 1 if a is a quadratic residue mod p

−1 if a is a nonresidue mod p

Definition 4.1. The floor function, denoted btc, is the largest integer n such that n ≤ t.

Definition 4.2. µ(a, p) is the number of integers in the list a, 2a, . . . , Pa that become neg-

ative when they are reduced modulo p into the interval from −P to P .
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Definition 5.1 (Lucas-Lehmer Recursive Relation).

si =

 4 if i = 0

s2i−1 − 2 otherwise

Definition 6.1 (Perfect Number). A number n is called a perfect number if the sum of its

proper divisors is equal to itself.

Definition 6.2. σ(n) is the sum of all divisors of n (including 1 and n).
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2p − 1 Date Discovered By Perfect Number
1 22 − 1 c. 500 BC Ancient Greek mathematicians 21(22 − 1)
2 23 − 1 c. 500 BC Ancient Greek mathematicians 22(23 − 1)
3 25 − 1 c. 275 BC Ancient Greek mathematicians 24(25 − 1)
4 27 − 1 c. 275 BC Ancient Greek mathematicians 26(27 − 1)
5 213 − 1 1456 Anonymous 212(213 − 1)
6 217 − 1 1588 Pietro Cataldi 216(217 − 1)
7 219 − 1 1588 Pietro Cataldi 218(219 − 1)
8 231 − 1 1772 Leonhard Euler 230(231 − 1)
9 261 − 1 1883 Ivan Mikheevich Pervushin 260(261 − 1)
10 289 − 1 1911 Jun R. E. Powers 288(289 − 1)
11 2107 − 1 1914 Jun 11 R. E. Powers 2106(2107 − 1)
12 2127 − 1 1876 Jan 10 Edouard Lucas 2126(2127 − 1)
13 2521 − 1 1952 Jan 30 Raphael M. Robinson 2520(2521 − 1)
14 2607 − 1 1952 Jan 30 Raphael M. Robinson 2606(2607 − 1)
15 21,279 − 1 1952 Jun 25 Raphael M. Robinson 21,278(21,279 − 1)
16 22,203 − 1 1952 Oct 07 Raphael M. Robinson 22,202(22,203 − 1)
17 22,281 − 1 1952 Oct 09 Raphael M. Robinson 22,280(22,281 − 1)
18 23,217 − 1 1957 Sep 08 Hans Riesel 23,216(23,217 − 1)
19 24,253 − 1 1961 Nov 03 Alexander Hurwitz 24,252(24,253 − 1)
20 24,423 − 1 1961 Nov 03 Alexander Hurwitz 24,422(24,423 − 1)
21 29,689 − 1 1963 May 11 Donald B. Gillies 29,688(29,689 − 1)
22 29,941 − 1 1963 May 16 Donald B. Gillies 29,940(29,941 − 1)
23 211,213 − 1 1963 Jun 02 Donald B. Gillies 211,212(211,213 − 1)
24 219,937 − 1 1971 Mar 04 Bryant Tuckerman 219,936(219,937 − 1)
25 221,701 − 1 1978 Oct 30 Landon Curt Noll & Laura Nickel 221,700(221,701 − 1)
26 223,209 − 1 1979 Feb 09 Landon Curt Noll 223,208(223,209 − 1)
27 244,497 − 1 1979 Apr 08 Harry Lewis Nelson & David Slowinski 244,496(244,497 − 1)
28 286,243 − 1 1982 Sep 25 David Slowinski 286,242(286,243 − 1)
29 2110,503 − 1 1988 Jan 28 Walter Colquitt & Luke Welsh 2110,502(2110,503 − 1)
30 2132,049 − 1 1983 Sep 19 David Slowinski 2132,048(2132,049 − 1)
31 2216,091 − 1 1985 Sep 01 David Slowinski 2216,090(2216,091 − 1)
32 2756,839 − 1 1992 Feb 19 David Slowinski & Paul Gage 2756,838(2756,839 − 1)
33 2859,433 − 1 1994 Jan 04 David Slowinski & Paul Gage 2859,432(2859,433 − 1)
34 21,257,787 − 1 1996 Sep 03 David Slowinski & Paul Gage 21,257,786(21,257,787 − 1)
35 21,398,269 − 1 1996 Nov 13 Joel Armengaud 21,398,268(21,398,269 − 1)
36 22,976,221 − 1 1997 Aug 24 Gordon Spence 22,976,220(22,976,221 − 1)
37 23,021,377 − 1 1998 Jan 27 Roland Clarkson 23,021,376(23,021,377 − 1)
38 26,972,593 − 1 1999 Jun 01 Nayan Hajratwala 26,972,592(26,972,593 − 1)
39 213,466,917 − 1 2001 Nov 14 Michael Cameron 213,466,916(213,466,917 − 1)
40 220,996,011 − 1 2003 Nov 17 Michael Shafer 220,996,010(220,996,011 − 1)
41 224,036,583 − 1 2004 May 15 Josh Findley 224,036,582(224,036,583 − 1)
42 225,964,951 − 1 2005 Feb 18 Martin Nowak 225,964,950(225,964,951 − 1)
43 230,402,457 − 1 2005 Dec 15 Curtis Cooper & Steven Boone 230,402,456(230,402,457 − 1)
44 232,582,657 − 1 2006 Sep 04 Curtis Cooper & Steven Boone 232,582,656(232,582,657 − 1)
45 237,156,667 − 1 2008 Sep 06 Hans-Michael Elvenich 237,156,666(237,156,667 − 1)
46 242,643,801 − 1 2009 Jun 04 Odd M. Strindmo 242,643,800(242,643,801 − 1)
47 243,112,609 − 1 2008 Aug 23 Edson Smith 243,112,608(243,112,609 − 1)
48* 257,885,161 − 1 2013 Jan 25 Curtis Cooper 257,885,160(257,885,161 − 1)
49* 274,207,281 − 1 2016 Jan 07 Curtis Cooper 274,207,280(274,207,281 − 1)
50* 277,232,917 − 1 2017 Dec 26 Jon Pace 277,232,916(277,232,917 − 1)
51* 282,589,933 − 1 2018 Dec 07 Patrick Laroche 282,589,932(282,589,933 − 1)

Table 8.1: Mersenne Primes and Associated Perfect Numbers
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