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Abstract

We study the contributions to the anomalous magnetic moment of the muon from theories

beyond the Standard Model, specifically supersymmetry. Results found at Brookhaven Na-

tional Laboratory in 2001 during the E821 experiment indicate that current theories may not

fully account for all of the interactions between the muon and fundamental gauge bosons. We

re-derive Dirac’s famous result of g = 2. We then reproduce the one loop contributions from

electroweak theory to the anomalous magnetic moment, aµ = (g−2)/2, of the muon. We then

use these calculations as a template for theories that go beyond the Standard Model. We show

illustrative results for minimal supersymmetry in scenarios with Planck-scale supersymmetry

breaking (MSUGRA), and determine parameter ranges that would be consistent with the aµ
discrepancy. In this way a sensitive probe like aµ may be used to constrain new physics.
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1 Introduction

The first half of the 20th century was a period of perhaps the greatest revolution in any scientific
field since Isaac Newton first published his Principia in 1687. In 1905, Albert Einstein published
his papers on special relativity, which connected the ideas of space and time. In addition, in the
first three decades of the 20th century, great physicists were beginning to work together to form
the field of non-relativistic quantum mechanics, which was essentially completed by 1927.

Much of physics, however, is dedicated to uniting all of the subfields of physics into one great
unified theory. Therefore, the next step for physicists was to make quantum mechanics consistent
with special relativity. This theory combining the two fields, known as relativistic quantum field
theory (RQFT), was formulated in the 1940s with the help of great names in physics, like Born,
Dirac, Jordan, Heisenberg, and Pauli. Since then, RQFT has provided a spectacularly successful
framework for describing elementary particles and their interactions at accessible energies.

One of RQFT’s earliest triumphs was when Dirac proved that the g-factor equaled two for
the spin angular momentum contribution to the magnetic moment of a fermion. The g-factor is a
proportionality constant found in the equation for the magnetic moment, µ, of a particle with spin
~S:

~µ = g
e

2m
~S

where e is the charge of an electron, m is the mass of the particle, and ~S is the spin vector for
the particle. This result had been inferred from atomic spectra which showed the small shifting of
energy levels due to the interaction of the magnetic moment of an electron with its environment.
It had yet to be explained, though, by a calculation until Dirac’s success. However, experiments
later showed that the g-factor did not, in fact, equal two, but instead, equaled two plus a small
correction. Then, in 1948, Julian Schwinger produced another major triumph for RQFT in his
calculation of correction, known as the the "anomalous" magnetic moment (g − 2) of the electron
and muon. Since then, precise measurements of aµ = (g − 2)/2 of fermions, specifically muons,
have been compared to precise calculations done by theorists for any discrepancies. Since aµ
gets contributions from all particles that couple directly or indirectly to the fermion, a difference
between the two could be an important clue to new physics, i.e., particles and interactions not yet
incorporated into the Standard Model.

In 2001, the E821 experiment at Brookhaven published the most precise measurement ever
done of aµ of the muon. The experiment found a 2.7σ discrepancy between the theoretical and
experiment value, and since then, improved calculations have raised that to a 3.3−3.6σ difference.
This discrepancy is one of the strongest indications so far that there is physics beyond the Standard
Model.

Our aim in this thesis is to take the E821 result and the improved theoretical values and con-
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strain the new particle or particles that may be responsible for this discrepancy. We will focus on
supersymmetry as an example of possible new physics, and show how the experimental result can
be used to constrain its structure. However, to set the stage and show how these calculations are
done, we will first reproduce the original one loop corrections made to aµ from the electroweak
theory.

2 Background

2.1 Quantum Field Theory’s Early Success

In 1928, Paul Dirac developed a relativistic wave equation, the Dirac equation, that naturally in-
corporated spin and correctly predicted antiparticles. One of its main features was that it gave the
correct ratio between the spin and magnetic moment which had been inferred from atomic spec-
tra. Physicists had long been confused by the g-factor for the spin magnetic dipole moment of
the electron which was twice as large as the g-factor for the orbital magnetic moment. This was
difficult to understand because it meant that the electron could not be considered a rotating ball of
charge. Therefore, its spin had to be considered more as an intrinsic quality rather than something
we could observe, like the rotation of the Earth. However, Dirac’s relativistic wave equation was
able to naturally produce this result with some slight manipulations of the equation[1]. I will now
show a derivation of this proof, in order to show one of the early successes of RQFT.

The Dirac equation for a free particle reads:

(iγµ∂µ −m)ψ = 0 , µ = 0, 1, 2, 3 (1)

where the derivative four-vector is defined as:

∂µ =
∂

∂xµ

To obtain this equation, Dirac started from:

pµpµ −m2 = 0

which is the energy-momentum relation:

E2 = p2 +m2

in four-vector form. Here, E is the energy, p is the momentum, and m is the mass of the particle.
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(We use units in which c = ~ = 1 throughout.)
His goal was to try and make quantum mechanics consistent with special relativity. Therefore,

since in relativity space and time are equivalent, Dirac decided to treat them on the same footing
in quantum mechanics as well. The nonrelativistic Schrodinger equation:

i
∂

∂t
Ψ =

[
−∇

2

2m
+ V (x)

]
Ψ

does not work in this scenario since space and time are not equivalent in this equation (first deriva-
tive for time is proportional to the second derivative for space). Therefore, he tried factoring this
relationship into:

pµpµ −m2 = (βkpk +m)(γλpλ −m) = βkγλpkpλ −m(βk − γk)pk −m2

where β and γ are eight constants we need to determine. In the second term we let λ = k since
it is a dummy variable. Since no terms can be linear in p, we must conclude that γk = βk. This
means all that is left to determine is what γ is such that:

pµpµ = γkγλpkpλ

This relation is only true if (γ0)2 = 1 and (γi) = −1. It is here that Dirac had an inspiration
that these γ constants must be matrices. Therefore, γµ represents the four gamma matrices. The
matrices must satisfy:

{γµ, γν} = 2gµν

so that γkγλpkpλ = pµpµ. Here:

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


is the Minkowski metric. The brackets around our gamma matrices are called the anticommutator:

{γµ, γν} = γµγν + γνγµ

We find that the smallest matrices that satisfy these are 4 × 4 matrices. For convenience, we will
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choose a particular representation of these gamma matrices, known as the Dirac representation:

γ0 =

(
1 0

0 −1

)
γi =

(
0 σi

−σi 0

)
i = 1, 2, 3

where each section of the above matrices represents a separate 2× 2 matrix. Here, σi are the Pauli
matrices defined as:

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)

Finally, since the gamma matrices are 4×4 matrices, we must then conclude that ψ, the wavefunc-
tion, is a four component column matrix, known as a bispinor. In the Dirac representation, we can
split it into two components:

ψ =

(
φ

χ

)
where φ is the top two components and χ is the bottom two components.

Now, we want to show that g = 2. We let the particle interact with an electromagnetic field
since we know the magnetic potential energy from this interaction is U = −~µ · ~B and g is con-
tained in µ. To get the correct form of the Dirac equation for an electron interacting with an
electromagnetic field, we replace ∂µ with the covariant derivative:

Dµ = ∂µ − ieAµ

Here, Aµ is the four vector electromagnetic potential:

Aµ = (φ, ~A)

where φ is the scalar potential and ~A is the magnetic vector potential. Therefore, Dirac’s equation
now reads:

(iγµDµ −m)ψ = 0 (2)

We can multiply this by iγνDν +m, resulting in:

−(γµγνDµDν +m2)ψ = 0

Our definitions of the gamma matrices earlier imply:

γµγν =
1

2
({γµ, γν}+ [γµ, γν ])

1

2
[γµ, γν ] = −iσµν

7



where we define:

σ0j = i

(
0 σj

σj 0

)
σij = εijk

(
σk 0

0 σk

)
σµν = −σνµ

and εijk is the Levi-Civita symbol:

εijk =


1 (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1 (i, j, k) = (3, 2, 1), (2, 1, 3), (1, 3, 2)

0 i = j, j = k, i = k

Furthermore, the notation of [γµ, γν ] indicates the commutator:

[γµ, γν ] = γµγν − γνγµ

With these substitutions, we arrive at:

−(DµD
µ − iσµνDµDν +m2)ψ = 0

Since our indices are interchangeable here and σµν is antisymmetric under exchange of its indices,
we can rewrite this as:

−(DµD
µ − i

2
σµν [Dµ, Dν ] +m2)ψ = 0

Finally, one can show that i[Dµ, Dν ] = eFµν (Appendix A), with the electromagnetic field strength
tensor defined as:

Fµν = ∂µAν − ∂νAµ

However, since we know the derivatives of the potentials are the fields, the elements of Fµν can be
related to electromagnetic fields. In fact:

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


The resulting equation is: (

DµD
µ − e

2
σµνFµν +m2

)
ψ = 0 (3)

Now, consider a weak magnetic field in the 3-direction. Since it is a weak field, any terms of order
A2
i or greater can be ignored. Therefore, we let A0 = 0, A1 = −1

2
Bx2, and A2 = 1

2
Bx1 so that
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F12 = ∂1A2 − ∂2A1 = B. Therefore, we find that ∂iAi = 0. The DµD
µ term can be rewritten as

(D0)
2 − (Di)

2. The (D0)
2 term will just be (∂0)

2 since A0 = 0. Therefore, we will examine the
(Di)

2 term first since it contains the Ai terms:

(Di)
2 = (∂i)

2 − ie
(
∂iAi + Ai∂i) +O(A2

i

)
= (∂i)

2 − 2ieAi∂i +O(A2
i )

= (∂i)
2 − 2ie(A1∂1 + A2∂2) +O(A2

i )

= (∂i)
2 − 2ieB

(
−x

2

2
∂1 +

x1

2
∂2

)
+O(A2

i )

= ~∇2 + ieB(x2∂1 − x1∂2) +O(A2
i )

In the second step, we used the product rule since our expression is still multiplied by our wave-
function. Finally, since −i∂µ = pµ we have:

B(xpy − ypx) = ~B · (~x× ~p) = ~B · ~L

and hence:
(Di)

2 = ~∇2 + e ~B · ~L+O(A2
i ) (4)

We can take the nonrelativistic limit here to try and make a connection with nonrelativistic quantum
mechanics. In the Dirac basis, the top two components contained in φ are much larger than the two
components contained in χ. This means χ → 0 so we only have to focus on φ here. Acting on φ
with (e/2)σµνFµν , we obtain:

e

2

(
σ12F12 − σ21F21

)
=
e

2
σ3 (F12 − F21)

since every other term of Fµν will be zero. However, F12 = −F21 and F12 = B as we showed
earlier. This leaves us with:

e

2
σ3(2B) =

e

2
~σ · 2 ~B

since ~B points in the third direction. Finally, we recall that ~S = ~σ/2 so that our final result is

e

2
σµνFµν = 2e ~B · ~S (5)

Finally, the only remaining part we have left is the (∂20 +m2)φ term. In the nonrelativistic limit,
the energy will be E = m + ENR, the rest energy plus the part we would call the energy in
nonrelativistic physics. These nonrelativistic energies will be much smaller than the rest energy
and so we can factor out the rapid time dependence that comes from the constant rest energy.

9



Therefore, we let φ = e−imtΨ. By the product rule:

∂

∂t

(
eimtΨ

)
= e−imt

(
−im+

∂

∂t

)
Ψ

This when used twice simplifies our equation to:

e−imt

[(
−im+

∂

∂t

)2

+m2

]
Ψ

In the nonrelativistic limit, any energy contained in Ψ will be small compared to the rest energy
contained in the exponent. Therefore, Ψ oscillates much more slowly than the exponential term.
Therefore, we can drop the squared derivative term and arrive at:

(
∂20 +m2

)
e−imtΨ ≈ e−imt

[
−2im

∂

∂t
Ψ

]
(6)

Putting all of our results together, canceling the e−imt term, and dividing by 2m, we are left with:[
−i ∂
∂t
−
~∇2

2m
− e ~B

2m
·
(
~L+ 2~S

)]
Ψ = 0 (7)

Thus, we arrive at the Schrodinger equation, as we should in the nonrelativistic limit. We recall
that the potential energy is −~µ · ~B, giving:

~µ =
e

2m

(
~L+ 2~S

)
Thus, the factor of two for the spin angular momentum of the electron, or any spin 1/2 particle,
interacting with the electromagnetic field appears naturally. This result was one of the earliest
triumphs for RQFT and began to show that the theory was producing correct results. Specifically,
this result indicates that spin is a relativistic phenomenon.

2.2 One Loop Correction from Interactions with a Photon

By 1947, it had become evident from various experiments that the magnetic moment actually dif-
fered from two by a small amount, known as the anomalous magnetic moment, or aµ. In 1948,
Julian Schwinger published a paper[2] that provided the calculation for the one loop contribution
to aµ from quantum electrodynamics (QED). At the time, the calculation was complicated. How-
ever, the calculation becomes much more tractable using the diagrammatic methods developed by
Richard Feynman.
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We begin by first examining the value of 〈p′, s′|Jµ|p, s〉, the matrix element between fermion
states of the four-vector electromagnetic current, where:

Jµ =
(
ρ, ~J
)

where ρ is the charge density and ~J is the current density. The states |p, s〉 and |p′, s′〉 are mo-
mentum and spin eigenstates (s = ±1/2). Since the Lagrangian density for QED contains the
interaction term:

Lint = −eJµAµ ,

this operator controls the interaction of the fermion with the electromagnetic field, where Aµ is the
electromagnetic vector potential. To lowest order in perturbation theory:

〈p′, s′|Jµ|p, s〉 = u(p′, s′)γµu(p, s)

where u(p, s) is a plane-wave solution to the free Dirac equation:

(γµpµ −m)u(p, s) = 0

and u ≡ u†γ0. The dagger over the u indicates that this is the Hermitian conjugate of the bispinor
u. Note that u satisfies:

u(p, s)(γµpµ −m) = 0

The normalization of the u’s is such that:

u(p, s′)u(p, s) = 2mδs,s′

Including higher order corrections to the matrix element, we can write:

〈p′, s′|Jµ|p, s〉 = u(p′, s′)(γµ + Γµ)u(p, s) (8)

where Γµ includes the contributions of higher order Feynman diagrams.
Now, Lorentz invariance and current conservation imply that[3]:

〈p′, s′|Jµ|p, s〉 = u(p′, s′)

[
γµF1(q

2) +
iσµνqν

2m
F2(q

2)

]
u(p, s) (9)

where q = p′−p and F1,2 are functions of the Lorentz invariant q2, known as "form factors." We can
learn nothing further about these form factors from Lorentz invariance and current conservation. To
lowest order in perturbation theory, F1(q

2) = 1 and F2(q
2) = 0. We want to relate this expression
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to the magnetic moment of a fermion. To see this, we use an useful identity relating spinors and
the gamma matrices known as the Gordon Decomposition (Appendix B):

uγµu = u

[
(p′ + p)µ

2m
+
iσµνqν

2m

]
u

Using this, the expression in eq. (9) becomes:

〈p′, s′|Jµ|p, s〉 = u(p′, s′)

[
(p′ + p)µ

2m
F1(q

2) +
iσµνqν

2m
(F1(q

2) + F2(q
2))

]
u(p, s)

As before, we can consider a slowly moving fermion interacting with an essentially static field.
Hence, we are interested in the limit: qµ ∼ 0, so that:

〈p′, s′|Jµ|p, s〉 = u(p′, s′)

[
(p′ + p)µ

2m
F1(0) +

iσµνqν
2m

(F1(0) + F2(0))

]
u(p, s) (10)

Now, the first term is independent of the spin and is what we would get for a spinless particle
interacting with an EM field. In that case, the Lagrangian has the form:

L = (Dµφ)(Dµφ)∗ + · · ·

where φ is a scalar field and Dµ = ∂µ − ieAµ as before. Thus, the Lagrangian contains the terms:

[φ(∂µφ
∗)− (∂µφ)φ∗]Aµ

which give a Feynman rule proportional to (p + p′)µ. This suggests that F1(0) is just the fermion
charge (in units of e), and thus, F1(0) = 1 to all orders in perturbation theory. This will be shown
in detail below.

The second term, involving the spin operators, contains the magnetic moment we want. This
can be shown, as above, by measuring the fermion’s interaction with a static magnetic field and
extracting the part of the energy proportional to the field. But, since:

F1(0) + F2(0) = 1 +O(α)

we infer that:
g = 2[F1(0) + F2(0)] .

Hence F2(0) gives the correction to g = 2. We could now calculate F2(0) by writing down the
Feynman diagrams for the current matrix element and picking out the correct terms in the limit
q → 0. However, we want to first prove that F1(0) = 1 to all orders. We can solve for the value of
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the first form factor by examining charge conservation.

2.2.1 Determining F1(0)

Consider the matrix element of the charge operator Q̂[3]:

〈p′, s′|Q̂|p, s〉 = (2π)3 · 2E~p δ(3)(~p ′ − ~p)δss′ (11)

Since |p, s〉 is an eigenstate of Q̂ with eigenvalue 1, Q̂ is simply:

Q̂ =

∫
d3~xJ0(x)

Translation invariance allows us to rewrite J0(x) as:

J0(x) = e−ip̂·~xJ0(0)eip̂·~x

where p̂ is the momentum operator:

p̂|0〉 = 0, p̂|p, s〉 = ~p |p, s〉, etc.

Thus:
Q̂ =

∫
d3~xe−ip̂·~xJ0(0)eip̂·~x

and hence:

〈p′, s′|Q̂|p, s〉 =

∫
d3~x〈p′, s′|e−ip̂·~xJ0(0)eip̂·~x|p, s〉

=

∫
d3~xe−i(~p

′−~p)·~x〈p′, s′|J0(0)|p, s〉

= (2π)3δ(3)(~p ′ − ~p)〈p′, s′|J0(0)|p, s〉 (12)

In the second line, we let the momentum operators act to the left and right, and in the third, we
used the integral representation of the Dirac delta function. The delta function will force ~p = ~p ′

which means q = 0. Eq. (10) then gives:

〈p′, s′|J0|p, s〉 = u(p′, s′)

[
(p′ + p)0

2m
F1(0)

]
u(p, s)

=
2E~p
2m

F1(0)2mδss′

= 2E~pF1(0)δss′

13



whereE~p = p0 = p′0. Plugging this back into our expectation value for the charge and simplifying:

〈p′, s′|Q̂|p, s〉 = (2π)3δ(3)(~p ′ − ~p)2E~pF1(0)δss′

Comparing to eq. (11) we conclude that F1(0) = 1 to all orders in perturbation theory. Therefore,
we conclude that the magnetic moment of a fermion is shifted by 1 + F2(0) and must work now
on finding F2(0).

2.2.2 Determining F2(0)

To get aµ, we will evaluate 〈p′, s′|Jµ|p, s〉 and pick out the part that corresponds to F2(0). There
are four diagrams we need to consider, shown in Fig. 1 with the original tree diagram. We can

Figure 1: Tree diagram and one loop photon diagrams.

return to, eq. (9), and use the Gordon Decomposition again on the second term instead of the first
to get:

〈p′, s′|Jµ|p, s〉 = u(p′, s′)

[
γµ[F1(0) + F2(0)]− (p′ + p)µ

2m
F2(0)

]
u(p, s) (13)

From this, we see that to isolate F2(0) we can throw away any terms proportional to γµ and keep
only terms that are proportional to p′µ and pµ. The bottom three diagrams all contain an γµ that is
not sandwiched between any other gamma matrices. However, the second diagram on the top will
have a γµ that is sandwiched between two other gamma matrices. Therefore, it will be the only
diagram that contributes to F2(0).
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We can normalize the contribution from this diagram by summing it with the contribution from
the tree diagram, as we did with eq. (8), so that we get u(γµ + Γµ)u where Γµ is the contribution
from the second diagram.

Applying the Feynman rules (Appendix C), we get:

Γµ =

∫
d4k

(2π)4
ieγν

i

�p
′ +��k −m

ieγµ
i

�p+��k −m
ieγν
−i
k2

(14)

where m is the mass of the fermion. We also use Feynman’s slash notation here where �p = pµγ
µ.

Our equation can be rewritten as:

Γµ = −ie2
∫

d4k

(2π)4
γν �p

′ +��k +m

(p′ + k)2 −m2
γµ �p+��k +m

(p+ k)2 −m2
γν

1

k2
(15)

which we will write as:
Γµ = −ie2

∫
d4k

(2π)4
Nµ

D

with:
Nµ = γν(�p

′ +��k +m)γµ(�p+��k +m)γν (16)

and:
D = [(p′ + k)2 −m2][(p+ k)2 −m2][k2] (17)

Now, we can combine these denominator factors using one of Feynman’s identities:

1

xyz
= 2

∫ ∫
dαdβ

1

[z + α(x− z) + β(y − z)]

where the integral is over a triangle bounded by α = 0, β = 0, α + β = 1. Thus:

1

D
= 2

∫
dαdβ

1

D
(18)

where
1

D
=

1

[k2 + 2k(αp′ + βp)]3
(19)

Next, we complete the square and let ` = k + (αp′ + βp) so that:

1

D
=

1

[`2 − (α + β)2m2]3
(20)
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Returning to eq. (16) and substituting in ` for k as we did for D, we have:

Nµ = γν [��̀ +��P
′ +m]γµ[��̀ +��P +m]γν (21)

where��P ′ = �p
′(1−α)−β�p and��P = �p(1−β)−α�p ′. It will easiest to organize the terms according

to their power of m. Multiplying out everything, we have:

Nµ = m2γνγµγν +m(γν��̀γµγν + γν��P
′γµγν + γνγµ��̀γν + γνγµ��Pγν)

+ γν��̀γµ��̀γν + γν��̀γµ��Pγν + γν��P
′γµ��̀γν + γν��P

′γµ��Pγν (22)

2.2.3 m2 term

A "contraction theorem" (listed in Appendix D) says:

γνγµγν = −2γµ (23)

Therefore, the m2 term is a γµ term and can be ignored.

2.2.4 m term

The terms proportional to m from eq. (22) are:

m(γν��̀γµγν + γν��P
′γµγν + γνγµ��̀γν + γνγµ��Pγν) (24)

Consider the ` terms first. Since k = `− (αp′+βp) we have d4` = d4k. Thus, our original integral
over k is now over `, and the integrals all still run from −∞ to∞. Thus, any term that is linear in
` should integrate zero. Therefore, we can drop any term linear in ` leaving:

m(γν��P
′γµγν + γνγµ��Pγν) = m(4P ′µ + 4P µ)

= 4m [p′µ(1− α)− βpµ + pµ(1− β)− αp′µ]

In the first line we made use of the contraction theorem (Appendix D):

γµγνγλγµ = 4gνλ

Now, consider the integral over α and β. The rest of the integrand, and the integration region, are
symmetric under renaming α ↔ β. Therefore, we can symmetrize the above under an exchange
of α and β to obtain:

= 4m(1− α− β)(p′ + p)µ
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2.2.5 m0 term

From eq. (22), the m0 terms are:

γν��̀γµ��̀γν + γν��̀γµ��Pγν + γν��P
′γµ��̀γν + γν��P

′γµ��Pγν (25)

Consider the l2 term first:

= γν��̀γµ��̀γν

= `λ`σ[γνγλγµγσγν ]

If we remember that this appears under an integral over `, we can use a handy trick to simplify this
expression. The integral has the general form:∫

d4` `µ`νf(`2)

By Lorentz invariance, this must transform like a 2-index tensor. The only available tensor is the
Minkowski metric. Thus: ∫

d4` `µ`νf(`2) = gµνC

where C is some constant that we will determine here. If we contract both sides by gµν , we obtain:

gµν
∫
d4` `µ`νf(`2) = gµνgµνC∫
d4` `2f(`2) = 4C

1

4

∫
d4` `2f(`2) = C

And thus: ∫
d4` `µ`νf(`2) = gµν

1

4

∫
d4` `2f(`2)

The net effect is that, under the integral we can replace:

`µ`ν →
1

4
gµν`

2

17



Substituting this result into our equation above, our `2 term becomes:

`λ`σ[γνγλγµγσγν ] =
1

4
gλσ`

2γνγλγµγσγν

=
1

4
`2(4γµ)

To get to the last expression, we first used a contraction theorem, then reordered the Minkowski
metric, and then used one final contraction theorem. Thus, only γµ remains and we can throw this
term out. For the same reasons as before, we can throw out the terms linear in ` as they will go to
zero under the integral. This leaves us with, from eq. (25):

γν��P
′γµ��Pγν = −2��Pγ

µ
��P
′

= −2[(1− β)�p− α�p
′]γµ[(1− α)�p

′ − β�p]

The Dirac equation implies that (�p −m)u(p, s) = 0 and u(�p −m) = 0. Since Γµ is sandwiched
between u(p′, s′) and u(p, s), we can replace �p acting to the right with m, and the same for �p

′

acting to the left. So this contribution reduces to:

−2[(1− β)�p− αm]γµ[(1− α)�p
′ − βm]

Now, we will again separate out our terms in powers of m:

− 2[(1− β)�pγ
µ(1− α)�p

′ −m[(1− β)�pγ
µβ + αγµ(1− α)�p

′] + αβm2γµ] (26)

Again, the m2 is proportional to γµ so we can throw it away. The m term from eq. (26) is:

2m[β(1− β)�pγ
µ + αγµ(1− α)�p

′]

We can again symmetrize under α↔ β to obtain the equivalent form:

2m

[
1

2
(�pγ

µ + γµ�p
′)

]
[β(1− β) + α(1− α)] = m[2pµ − γµ�p+ 2p′µ − �p

′γµ][β(1− β) + α(1− α)]

Next, we use the fact that our terms are sandwiched between u(p′, s′) and u(p, s) to get:

m[2pµ − γµm+ 2p′µ −mγµ][β(1− β) + α(1− α)]
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The two γµ’s can be thrown away, and the final result for the m term is:

2m(p′ + p)µ[β(1− β) + α(1− α)]

Finally, we consider the m0 term:

−2(1− β)(1− α)�pγ
µ
�p
′

We can simplify this using the anticommutation relation for the gamma matrices. We can complete
this step multiple times and drop any γµ terms along the way to find:

−2(1− β)(1− α)[2pµ�p
′ − γµ�p�p

′] = −2(1− β)(1− α)[2pµ�p
′ − 2p′pγµ + γµ�p

′
�p]

= −2(1− β)(1− α)[2pµ�p
′ + 2p′µ�p− �p

′γµ�p]

Again, these are sandwiched between our u and u spinors so using that fact and dropping another
γµ term, we get the final result:

−4m(p′ + p)µ(1− β)(1− α)

Putting all the terms together, the terms proportional to (p′ + p)µ are:

Nµ = 4m(1−α− β)(p′+ p)µ + 2m(p′+ p)µ[β(1− β) +α(1−α)]− 4m(p′+ p)µ(1− β)(1−α)

= 2m(p′ + p)µ(α + β − α2 − β2 − 2αβ)

= 2m(p′ + p)µ(α + β)(1− α− β) (27)

And now, we can do the integral and evaluate F2(0). Using eq. (20) and eq. (27), we have:

Γµ = −2ie2
∫
dα

∫
dβ

∫
d4`

(2π)4
2m(p′ + p)µ(α + β)(1− α− β)

[`2 − (α + β)2m2]3
(28)

We can do the integral over ` by using the basic formula for Feynman integrals:∫
d4k

(2π)4
1

[k2 −m2]3
=

−i
32π2m2

Thus:
Γµ = −2ie2

∫
dα

∫
dβ 2m(p′ + p)µ(α + β)(1− α− β)

−i
32π2(α + β)2m2

(29)
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Finally, we can simplify eq. (29) and do the integral over α and β remembering our integral is over
a triangle formed by α = 0, β = 0, α + β = 1. The result is:

Γµ = − e2

8π2

(p′ + p)µ

2m
(30)

Comparing this to eq. (13), we see that:

F2(0) =
e2

8π2
=

α

2π
(31)

with the fine structure constant, α = e2/4π ≈ 1/137. This is the correction to the magnetic
moment obtained first by Schwinger in 1948. Its numerical value is:

aQED =
g − 2

2
= 0.00116

This calculation shows the basic techniques used to evaluate the contributions of other particles
and interactions to aµ.
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3 Weak Interaction Corrections

The electroweak theory is a unified theory of the electromagnetic and weak interactions, for which
Sheldon Lee Glashow, Steven Weinberg, and Abdus Salam shared the 1972 Nobel Prize. The
theory became fully realized with the discovery of the Higgs boson in 2012 at the Large Hadron
Collider (LHC). These ideas are important in many contexts, including various attempts to go
beyond the Standard Model. Therefore, I will review them here.

Both QED and the electroweak theory are gauge theories. Their interactions are determined
by a special "symmetry" known as gauge symmetry, and are conveniently expressed by specifying
a certain mathematical group. For QED, the group is U(1), while for the electroweak theory, the
group is the product group SU(2)×U(1). The symmetry here is essential for the mathematical
consistency of the theory.

A key feature of the weak interactions is that the gauge bosons that mediate the weak interaction
are massive, unlike the photon. Problems arise when trying to describe the weak interaction as
a gauge theory since the gauge invariance requires that the bosons be strictly massless. In the
late 1960’s and early 1970’s, this problem was resolved by allowing the gauge symmetry to be
"spontaneously broken." This idea refers to a situation in which the ground state (vacuum) of the
theory does not possess the full symmetry of the equations of motion. An common example of
this is a ferromagnet, which can be thought of as an array of spins with dipole-dipole interactions.
These interactions are invariant under spatial rotations. However, in the ground state, all the spins
are aligned in one particular direction, which minimizes the energy of the system. Therefore, the
ground state spontaneously breaks the rotational invariance. In this case, we are left with a remnant
symmetry, invariance under rotations about the magnetization direction. In terms of group theory,
we say that the SO(3) invariance has been broken down to SO(2)(or U(1)).

A profound result regarding these spontaneously broken symmetries is the appearance of Gold-
stone bosons, massless excitations with particular interactions. In the ferromagnet, these would be
very long wavelength "spin waves," excitations where the spins gradually deviate from the magne-
tization direction over arbitrarily long distances. Since the wavelengths can be arbitrarily long, the
energy can be arbitrarily low. This is the characteristic of a massless excitation.

Now, when the symmetry that is broken is a gauge symmetry, something very different occurs.
In this case, the would-be Goldstone boson is "eaten" by the original massless gauge field, resulting
in a massive gauge field. This is known as the Higgs mechanism and is the only way to reconcile
local gauge invariance with massive gauge particles.

So in the electroweak theory, the full gauge symmetry is broken by a Higgs field down to a
remnant, the U(1) of QED. The gauge bosons associated with the broken symmetries get masses
and are the W± and Z bosons. The interactions are tightly constrained and there is no freedom
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once the symmetry is specified. This has all been confirmed experimentally over the past 40+
years in hundreds of high-precision tests. The culmination of all this work was the discovery of
the Higgs particle itself, with all of the expected properties.

These ideas are important for our concerns as they may play a role in possible extensions
of the Standard Model. For example, the strong, weak, and EM couplings approximately unify
at a high energy scale, suggesting the Standard Model may itself be the result of spontaneous
breaking of a "grand unified" theory. This GUT would be based on a bigger gauge group, whose
spontaneous breakdown leaves additional massive gauge bosons whose effects we could try to
measure. However, these additional bosons would be much too massive to produce in present or
future accelerators. The most dramatic of these bosons would be one that mediates proton decay,
something yet to be observed. More importantly for us, these super-heavy gauge bosons would
also make minute corrections to aµ and other observables. Therefore, it is of great interest to make
very precise calculations and measurements to see if these effects can be discovered.

One of the most prevalent theories that goes beyond the Standard Model is supersymme-
try(SUSY). SUSY is a proposed symmetry that relates fermions and bosons. If true, it would
imply that each particle in the Standard Model has a "superpartner" with a different spin; every
boson would have a fermion-like superpartner and vice versa. The fact that these particles have not
yet been discovered is a sign that SUSY, if true, is itself a broken symmetry, possibly spontaneously
broken. The LHC’s primary focus currently is searching for SUSY.

For our purposes, the main feature of SUSY is that, if true, there will be many new particles
with spin 0, 1

2
, 1. These will also make contributions to aµ for the muon or electron. Again,

comparing precision calculations and experiments may provide indirect evidence of these SUSY
particles and give various clues to the nature of new physics.

As a template for aµ calculations in a GUT or in SUSY, we can examine the electroweak theory
itself. As a spontaneously broken gauge theory, it is structurally very similar to GUTs, differing
only in technical details like couplings and group theory factors. In addition, the EW calculations
are most conveniently carried out in a framework where one incorporates the Goldstone modes
explicitly, i.e., includes them as separate particles. This is just a technicality, however, as one could
always absorb the Goldstone modes into the massive gauge fields and work with those directly.
The main point is that the Goldstone bosons are spin 0 particles, and so again, the EW calculation
contains the ingredients needed for SUSY, where spin 0 particles are more common than spin 1/2.

We will therefore carry out the EW calculation in full detail, with the idea of relating it to GUT
or SUSY models later.
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3.1 Z Boson Contribution

There are two diagrams that will contribute to aµ here. These diagrams are shown in Fig. 2.

(a) Z boson one loop diagram. (b) Z Goldstone boson one loop diagram.

Figure 2: One loop diagrams for the Z boson.

We will calculate the contribution from the left diagram first. The Feynman rules (Appendix C)
now give:

Γµ =
−ig2

16 cos2 θw

∫
d4k

2π4

Nµ

D
(32)

where:

Nµ = γν [(−1 + 4 sin2 θw)− γ5](�p
′ +��k −m)γµ(�p+��k +m)γν [(−1 + 4 sin2 θw)− γ5]

1

D
=

1

(p′ + k)2 −m2

1

(p+ k)2 −m2

1

k2 −M2
z

We again use Feynman’s identity to combine denominators:

1

D
= 2

∫
dαdβ

1

[(k + (αp ′ + βp))2 −m2(α + β)2 +M2
z (α + β − 1)]3

As before, we let ` = k + (αp ′ + βp) to obtain:

1

D
= 2

∫
dαdβ

1

[`2 −m2(α + β)2 +M2
z (α + β − 1)]3

(33)
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Our job is again to extract from Nµ the terms proportional to (p′ + p)µ. We can separate Nµ into
four different terms that we will consider separately:

T1 = γν(1− 4 sin2 θw)(�p
′ +��k +m)γµ(�p+��k +m)γν(1− 4 sin2 θw)

T2 = γνγ5(�p
′ +��k +m)γµ(�p+��k +m)γν(1− 4 sin2 θw)

T3 = γν(1− 4 sin2 θw)(�p
′ +��k +m)γµ(�p+��k +m)γνγ

5

T4 = γνγ5(�p
′ +��k +m)γµ(�p+��k +m)γνγ

5

We can move around the γ5 terms to try and simplify our expression further using the identities:

γ5γ5 = 1 γ5γµ = −γµγ5

which follows from our definition of γ5. After this, we can combine the terms with only one γ5 in
them which will eliminate any of their m1 terms. Therefore, we are left with three terms:

T1 = (1− 4 sin2 θw)2γν(�p
′ +��k +m)γµ(�p+��k +m)γν (34)

T2 + T3 = 2(1− 4 sin2 θw)[γνγ5(�p
′ +��k)γµ(�p+��k)γν +m2γνγ5γµγν ] (35)

T4 = γν(�p
′ +��k −m)γµ(�p+��k −m)γν (36)

We can now begin to simplify each term in much the same way as we did with the QED calculation.
For eq. (34), we again let:

��̀ = ��k − (α�p
′ + β�p) ��P

′ = (1− α)�p
′ − β�p ��P = (1− β)�p− α�p

to obtain:
T1 = (1− 4 sin2 θw)2γν(��̀ +��P

′ +m)γµ(��̀ +��P +m)γν

But if we look back at our previous calculation for QED, it is easy to see that this is just the same
term from that calculation multiplied by (1− 4 sin2 θw)2. Hence:

T1 = 2m(p′ + p)µ(α + β)(1− α− β)(1− 4 sin2 θw)2 (37)

24



We will next consider eq. (36) since it does not include any γ5 terms. Again, we use our definitions
of `, P ′, and P to get:

T4 =γν(��̀ +��P
′ −m)γµ(��̀ +��P −m)γν

=γν��̀γµ��̀γν + γν��̀γµ��Pγν + γν��P
′γµ��̀γν + γν��P

′γµ��Pγν

−m(γν��̀γµγν + γν��P
′γµγν + γνγµ��̀γν + γνγµ��Pγν)

+m2γνγµγν

As before, we throw out any γµ terms and therefore drop the m2 term. Furthermore, the first term
is just our m0 term from the QED calculation and the second term is our m term from the QED
calculation with an overall minus sign. We therefore obtain:

T4 = 2m(p′ + p)µ[(α + β)(1− α− β)− 4(1− α− β)] (38)

Finally, the term with a single γ5 is dropped since it contributes to a different form factor not
discussed previously and therefore is not relevant for the magnetic moment. The final result is
thus:

Nµ = 2m(p′+p)µ[(α+β)(1−α−β)(1−4 sin2 θw)2 +(α+β)(1−α−β)−4(1−α−β)] (39)

And hence:

Γµ =
−ig2m

4 cos2 θw
(p′ + p)µ

∫
dαdβ∫

d4l

2π4
(α+ β)(1− α− β)(1− 4 sin2 θw)2 + (α+ β)(1− α− β)− 4(1− α− β)

`2 −m2(α+ β)2 +M2
z (α+ β − 1)]3

(40)

We can do the ` integral as before with Feynman’s formula:∫
d4`

(2π)4
1

[`2 −M2]3
=

−i
32π2M2

with:
M2 = M2

Z(1− α− β) +m2(α + β)2

Now, for the muon:
m

MZ

=
0.106 GeV

91 GeV
∼ 10−3
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Therefore, an expansion in powers ofm/MZ makes sense. To leading order, this amounts to setting
m = 0 in M2, which results in:

Γµ =
−g2m

128π2 cos2 θw
(p′ + p)µ

∫
dαdβ

(α + β)(1− α− β)(1− 4 sin2 θw)2 + (α + β)(1− α− β)− 4(1− α− β)

M2
Z(1− α− β)

The first correction to this will be of orderm/M2
Z ∼ 10−5. Therefore, after canceling the (1−α−β)

terms, we have:

Γµ =
−g2m

128π2M2
Z cos2 θw

(p′ + p)µ
∫
dαdβ (α + β)(1− 4 sin2 θw)2 + (α + β)− 4

Finally, we can evaluate the remaining integrals:∫ 1

0

dα

∫ 1−α

0

dβ(α + β)(1− 4 sin2 θw)2 + (α + β)− 4 =

[
−4

3
− 8

3
sin2 θw +

16

3
sin4 θw

]
to obtain:

Γµ = −GFm
2

8
√

2π2

(p′ + p)µ

2m

[
−4

3
− 8

3
sin2 θw +

16

3
sin4 θw

]
(41)

In this result, we have used the fact that M2
Z cos2 θw = M2

W and introduced the Fermi constant:

GF =

√
2g2

8M2
W

The contribution, F2(0), to the anomaly is as before the coefficient of −(p′ + p)µ/2m, here:

F2(0) =
GFm

2

8
√

2π2

[
−4

3
− 8

3
sin2 θw +

16

3
sin4 θw

]
(42)

Next, we consider the diagram from Fig. 2 that inserts the Goldstone boson. The Feynman rules
give:

Γµ =
−ig2zm2

4M2
W

∫
d4k

(2π)4
γ5 �p

′ +�k +m

(p′ + k)2 −m2
γµ �p+�k +m

(p+ k)2 −m2
γ5

1

k2 −M2
z

(43)

This can be evaluated in the same way as before. However, the overal factorm2/M2
W is of the same

order as the term we just dropped in the Z boson contribution. (Remember that M2
Z cos2 θw =

M2
W so MZ and MW are of the same order.) We can and must therefore neglect the Goldstone

contribution. Therefore, eq (42) gives the full Z boson contribution to aµ.
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3.2 W Boson Calculation

The W boson correction has four associated diagrams: one involving solely W bosons, two in-
volving a W boson and a Goldstone boson, and one involving two Goldstone bosons. The diagram
for only W boson corrections is shown in Fig. 3.

Figure 3: W boson one loop diagram.

We again write Γµ in its normal form:

Γµ =
ig2

8

∫
d4k

(2π)4
Nµ

D
(44)

where:

Nµ =γλ(1− γ5)��kγλ(1− γ5)(p′ + p+ 2k)µ

− γµ(1− γ5)��k(�p
′ +��k + �q)(1− γ

5) + (�q − �p−��k)(1− γ5)��kγµ(1− γ5)
1

D
=

1

(p+ k)2 −M2
W

1

(p′ + k)2 −M2
W

1

k2

We combine our denominator term again using Feynman’s identity and let ` = k + αp′ + βp to
find:

1

D
= 2

∫ ∫
dαdβ

1(
`2 +m2

[
(α + β)− (α + β)2 − M2

W

m2 (α + β)
])3 (45)

As before, we intend to find the (p′ + p)µ terms in Nµ. In our manipulation of Nµ, we drop any
terms with only one γ5. This leaves us with two terms, one with no γ5’s:

γλ��kγλ(p
′ + p+ 2k)µ − γµ��k(�p

′ +��k + �q) + (�q − �p−��k)��kγµ

and one with multiple γ5’s:

γλγ5��kγλγ
5(p′ + p+ 2k)µ − γµγ5��k(�p

′ +��k + �q)γ
5 + (�q − �p−��k)γ5��kγµγ5
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If we move around the γ5 terms in the second term, we get back the exact same thing as the first
term so that with q = p′ − p:

Nµ = 2(γλ��kγλ(p
′ + p+ 2k)µ − γµ��k(2�p

′ +��k − �p)− (2�p+��k − �p
′)��kγµ) (46)

We will manipulate the leading term in eq. (46) first. We reuse the contraction theorem, eq. (23),
and recall k = `− αp′ − βp to get:

−2(��̀− α�p
′ − β�p)(p

′ + p+ 2`− 2αp′ − 2βp)

We multiply out our terms and as before any terms linear in ` will integrate to zero:

−2(2`µ��̀−m(α + β)(1− 2α)p′µ −m(α + β)(1− 2β)p)

This expression is symmetric under interchange of α and β. Furthermore, it will have the same `2

simplification and will result in the first term being proportional to only γµ. These simplifications
leave us with:

2m(p′ + p)µ(α + β)(1− α− β)

For the next term, we use the anticommutation relation and k = `− αp′ − βp to obtain:

8p′µ(��̀− α�p
′ − β�p)− 2mγµ(��̀− α�p

′ − β�p)

As before, we drop any terms proportional to ` or γµ and use Dirac’s equation to replace any �p
′

and �p with m. This results in the expression:

−4m(α + 2β)p′µ

Finally, we symmetrize under α and β interchange to arrive at:

−6m(α + β)p′µ

Next, we can notice that the last term is exactly the same as the second term, just with p′ and p
switched. Therefore, its contribution to Nµ will be the same except with p put in place of p′:

−6m(α + β)pµ

Hence:
Nµ = 2m(p′ + p)µ(α + β)(2[1− α− β]− 3) (47)
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and:
Γµ =

ig2

4

∫
dαdβ

∫
d4`

(2π)4
2m(p′ + p)µ(α + β)(2[1− α− β]− 3)(

`2 +m2
[
(α + β)− (α + β)2 − M2

W

m2 (α + β)
])3

The Feynman integral formula allows to complete the d4` integral again:

Γµ =
ig2

4

∫
dαdβ

−2mi(p′ + p)µ(α + β)(2[1− α− β]− 3)

32π2m2(α + β)
(
−1 + α + β +

M2
W

m2

)
=
g2m

64π2
(p′ + p)µ

∫
dαdβ

2(1− α− β)− 3

M2
W − (1− α− β)m2

=
g2m2

32π2M2
W

(p′ + p)µ

2m

∫
dαdβ

2(1− α− β)− 3

1− (1− α− β) m2

M2
W

We again take the leading term in an expansion in powers of m2/M2
W , which amounts to putting

m→ 0 in the denominator. This gives:

Γµ =
GFm

2

4π2
√

2

(p′ + p)µ

2m

∫
dαdβ(−1− 2α− 2β)

The integral is equal to −7/6 so that:

Γµ = −7

3

GFm
2

8
√

2π2

(p′ + p)µ

2m

and hence:
F2(0) =

7

3

GFm
2

8
√

2π2
(48)

In addition to the W diagram we showed earlier, there are three other diagrams for the W
contribution that include Goldstone bosons (Fig. 4).

Figure 4: W Goldstone boson one loop diagrams.
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For the first diagram, the Feynman rules (Appendix C) give:

Γµ =
ig2

8

∫
d4k

(2π)4
(1− γ5)��kγµ(1− γ5) 1

(p′ + k)2 −M2
W

1

(p+ k)2 −M2
W

1

k2
(49)

The denominator in eq. (49) is the same as the W boson so the result will just be what we have in
eq. (45). In the numerator, we drop any γ5 terms as before, leaving:

Nµ = ��kγµ + γ5��kγµγ5

Rearranging the γ5 in the second term and substituting in k = `− αp′ − βp gives:

Nµ = 2(��̀− α�p
′ − β�p)γ

µ

We use the anticommutation relation and remove any terms proportional to ` or γµ to give the final
result:

Nµ = −4βpµ (50)

We can now plug in eq. (45) and eq. (50) into eq. (49), giving:

Γµ =
ig2m

4

∫
dαdβ

∫
d4`

(2π)4
−4βpµ(

`2 +m2
[
(α + β)− (α + β)2 − M2

W

m2 (α + β)
])3

Performing the momentum integration:

Γµ =
−g2m

32π2M2
W

∫
dαdβ

βpµ

(α + β) + m2

M2
W

[(α + β)2 − (α + β)]
(51)

We will leave this for right now and work with the other diagrams first to hopefully sum them all
together and make the integral simple to calculate.

The second diagram will give a correction similar to the first, with the numerator changed to:

Nµ = γµ(1− γ5)��k(1 + γ5)

The denominator will be exactly the same as the W boson’s correction and so we can reuse that
result. Multiplying everything out, dropping γ5 terms, and substituting in for k as before, we find:

Nµ = 2γµ(��̀− α�p
′ − β�p)

This numerator is again similar to the first diagram, just with the γµ moved to the other side. This
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results in the same expression as eq. (50) but with β → α and p→ p′:

Nµ = −4αp′µ (52)

Thus:
Γµ = − g2m

32π2M2
W

∫
dαdβ

αp′µ

(α + β) + m2

M2
W

[(α + β)2 − (α + β)]
(53)

The third diagram of Fig. 4 gives:

Γµ =
ig2m2

8M2
W

∫
d4k

(2π)4
(1− γ5)��k(1 + γ5)(p′ + p+ 2k)µ

1

(p′ + k)2 −M2
W

1

(p+ k)2 −M2
W

1

k2
(54)

We can observe, however, that with the Z Goldstone boson correction, we already have a m2/M2
W

term out in front. This means that this correction is subleading and can be dropped. Therefore, the
full W Goldstone contribution is eq. (51) summed with eq. (53):

Γµ = − g2m

32π2M2
W

∫
dαdβ

αp′ + βp

(α + β) + m2

M2
W

[(α + β)2 − (α + β)]

We can symmetrize under interchange of α and β and introduce GF , obtaining:

−GFm
2

4
√

2π2

(p′ + p)µ

2m

∫
dαdβ

(α + β)

(α + β) + m2

M2
W

[(α + β)2 − (α + β)]

And take the leading term in m/MW to obtain:

Γµ =
−GFm

2

8
√

2π2

(p′ + p)µ

2m

From this, we extract:

F2(0) =
GFm

2

8
√

2π2
(55)

This is the full correction from the W Goldstone boson diagrams.
The complete W Boson contribution is obtained from eqs. (48) and (55):

F2(0) =
10

3

GFm
2

8
√

2π2
(56)

The corrections to aµ from the electroweak theory are then complete. We can now add up all
of these corrections to get an idea of the relative size of each correction separately and summed
together.
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4 Total Electroweak Correction to aµ of the Muon

We first summarize the corrections appearing in eqs. (31), (43), and (56):

F2(0)γ =
α

2π

F2(0)Z =
GFm

2

8
√

2π2

[
−4

3
− 8

3
sin2 θw +

16

3
sin4 θw

]
F2(0)W =

10

3

GFm
2

8
√

2π2

To get the numerical total of our corrections, we first need to get the values of our numerical
constants. The fine structure constant is measured to be α−1 = 137.035999049. [5]Therefore, our
correction due to QED is numerically:

F2(0)γ = 1.16140973318× 10−3

Notably, we see that the weak corrections depend on the mass of the fermion. Therefore, the muon
is a more sensitive probe to aµ since mµ/me ∼ 200. For the Z and W boson corrections, we need
to define sin2 θw, the Fermi constant, GF , and the mass of the muon, m:

sin2 θw = 1− cos2 θw = 1−
(
MW

MZ

)2

= 0.2229

GF = 1.1664× 10−5
1

GeV 2

mµ = 0.1057 GeV

With these constants defined, we can now get the numerical results for the weak corrections. For
the Z boson, we conclude:

F2(0)Z = −1.941× 10−9

For the W boson, we find:
F2(0)W = 3.890× 10−9

These calculations show why we threw out the subleading terms in the first place. The corrections
due to weak interactions are already exceptionally small compared to the corrections due to QED.
If we included any of those subleading terms, their contributions would have been approximately
10−6 times smaller than the weak corrections.

At last, we can add together all of these corrections we have worked so hard to find, getting the
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final numerical result of:
F2(0) = 1.16141168218× 10−3 (57)

And so we have found the total one loop correction to aµ of the muon from electroweak theory.
The next step is now applying all that we have learned from these calculations and using it to try
and bridge the gap between the current theoretical and experimental values for aµ.
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5 Testing for New Physics

We now move into our main goal of constraining the masses of supersymmetric particles, based
on the discrepancy found between the current experimental and theoretical values of aµ. The
experimental result measured at Brookhaven in 2001 for aµ is [6]:

aµ = 1 165 920 89(54)(63)× 10−11 (58)

Since the experiment was completed, the theoretical calculation of aµ has improved, especially in
its calculations of hadronic contributions, and the result is now:

aµ = 1 165 918 02(49)× 10−11 (59)

These results give a difference of:

δaµ = 287± 80× 10−11 (60)

This leads to a discrepancy of 3.6σ, which indicates that there may be additional contributions to
aµ beyond the Standard Model.

To show how these results can be used to constrain new physics, we will consider the case of
supersymmetry. As mentioned before, SUSY relates particles of different spins and implies that
every known particle has a superpartner with spin 1/2 unit different. Therefore, fermions are the
partners of bosons, and vice versa. For example, the spin 1 has a spin 1/2 partner, the photino,
while the spin 1/2 electron has a spin 0 partner, the selectron. The naming convention is such
that fermionic partners of bosons add an "-ino" suffix, while bosonic partners add an "s-" prefix.
Therefore, the other fermionic partners will be the gluino (partner of the gluon), the wino and zino
(partners of theW and Z), and the higgsino (partner of the Higgs boson). For the bosonic partners,
we also have the spin 0 squarks (top squark, up squark, etc.) and the sneutrinos.

The motivation for SUSY is that it has the potential to solve many of the shortcomings of
the Standard Model. The most important of these is the "hierarchy problem," which refers to the
need for very precise fine-tuning of paramters to maintain the ratio between the energy scale of
the electroweak symmetry breaking and a higher, more fundamental scale, perhaps the Planck
scale. For example, the observed Higgs boson is expected to have a mass much larger than is
actually observed. This could be the result of accidental fine-tuning, but it suggests that there is a
symmetry instead. SUSY is able to resolve this issue because the contributions to the Higgs mass
from the superpartners tends to cancel those from the Standard Model particles, resulting in much
less sensitivity to physics at high energy scales.
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Figure 5: Unification of the couplings at high energies. Dashed lines show SM couplings, solid
lines include SUSY contributions. In each case α ≡ g2/4π, and the subscripts 3, 2, 1 refer to the
SU(3), SU(2)L, and U(1)Y couplings, respectively.

Another suggestive hint involves the apparent unification of couplings at high scale discussed
earlier in regards to the GUT. Fig. 5 shows the evolution of the Standard Model couplings with
(solid line) and without SUSY. We can see that the idea of unifying them works much better when
we include SUSY.

Furthermore, SUSY gives new sources of CP violation, a problem of the Standard Model, and
can provide an attractive and viable candidate for dark matter. String theory also requires SUSY
so if string theory correctly describes quantum gravity, then SUSY is almost certainly correct.

However, despite being the major focus of experiments at the LHC, none of the superpartners
have been observed directly. The question then arises whether there existence could be detected
indirectly, through something like the discrepancy in the muon aµ results. This is what we intend
to consider here.

To explore this idea, we need to evaluate the corrections to aµ that would arise from SUSY
particles. The largest corrections to aµ will again come from one-loop diagrams. In the minimal
supersymmetric standard model (MSSM), there is a coupling between the muon, smuons (scalar
muons), and "neutralinos," fermionic partners to gauge bosons that are electrically neutral. Neu-
tralinos are the collective names for the photino and zino. There is also a coupling between the
muon, muon sneutrinos, and charginos, partners of the W±. Hence, there are two new diagrams to
evaluate shown in Fig. 6.

We have already done much of the work in evaluating these contributions, including calculating

35



Figure 6: One-loop contributions to aµ in minimal supersymmetry.

the contributions of gauge bosons (spin 1), fermions (spin 1/2), and scalars (spin 0). The challenge
is to include all the contributions with the correct coupling factors. Among the complexities is the
fact that particles created in the interactions are generally mixtures of states with definite mass
("mass eigenstates") that appear in Feynman propagators. Therefore, there are mixing matrices
that translate between the two sets of states and appear among the coefficients in the Feynman
diagrams.

As an example, if we assume a MSUGRA scenario for supersymmetry breaking (see below),
then in the basis of gauge eigenstates, the neutralinos have a mass matrix that can be written in the
form:

Mχ0 =


M1 0 −mZ cos β sin θw mZ sin β sin θ

0 M2 mZ cos β cos θw −mZ sin β cos θw

−mZ cos β sin θw mZ cos β cos θw 0 −µ
mZ sin β sin θw −mZ sin β cos θw −µ 0


Here M1 and M2 are SUSY breaking “gaugino mass parameters," µ is a SUSY-respecting Higgs
mass parameter, and tan β = vu/vd is the ratio of vacuum expectation values for the two Higgs
fields of the theory. To find the basis of states with definite masses, we must diagonalize this
matrix, i.e., find N such that:

N∗Mχ0N † = diag(mχ0
1
, mχ0

2
, mχ0

3
, mχ0

4
)

The matrix elements of N are then part of the Feynman rules for the theory. A similar story arises
for the charginos and smuons.

After incorporating all these effects, the one-loop corrections to aµ coming from SUSY can be
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written as [7]:

δaχ
0

µ =
mµ

16π2

∑
i,m

[
− mµ

12m2
µ̃m

(
|nLim|2 + |nRim|2

)
FN
1 (xim) +

mχ0
i

3m2
µ̃m

Re
(
nLimn

R
im

)
FN
2 (xim)

]
(61)

and:

δaχ
±

µ =
mµ

16π2

∑
k

[
− mµ

12m2
ν̃µ

(
|cLk |2 + |cRk |2

)
FC
1 (xk) +

mχ±k

3m2
ν̃µ

Re
(
cLk c

R
k

)
FC
2 (xk)

]
(62)

where i = 1, 2, 3, 4,m = 1, 2, and k = 1, 2 are the neutralino, smuon, and chargino mass eigenstate
labels respectively. The kinematic loop functions are defined as:

FN
1 (x) =

2

(1− x)4
[
1− 6x+ 3x2 + 2x3 − 6x2 lnx

]
FN
2 (x) =

3

(1− x)3
[
1− x2 + 2x lnx

]
FC
1 (x) =

2

(1− x)4
[
2 + 3x− 6x2 + x3 + 6x lnx

]
FC
2 (x) = − 3

2(1− x)3
[
3− 4x+ x2 + 2 lnx

]
They are normalized such that FN

1 (1) = FN
2 (1) = FC

1 (1) = FC
2 (1). These functions depend on

the variables xim and xk, defined as:

xim =
m2
χ0
im

m2
µ̃m

xk =
m2
χ±k

m2
ν̃µ

where m2
χ0
im

, m2
µ̃m

, m2
χ±k

, and m2
ν̃µ

are the mass eigenstates of the neutralino, smuon, chargino, and
muon sneutrino respectively.

We further define:

nRim =
√

2g1Ni1Xm2 + yµNi3Xm1

nLim =
1√
2

(g2Ni2 + g1Ni1)X
∗
m1 − yµNi3X

∗
m2

cRk = yµUk2

cLk = −g2Vk1

where the ∗ indicates the complex conjugate. The parameters g2 ' 0.66 and g1 ' 0.36 are the
SU(2) and U(1) gauge couplings. Furthermore, yµ = g2mµ/

√
2mW cos β is the muon Yukawa
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coupling. The above expressions also contain the neutralino (Nij), chargino (Ukl and Vkl), and
smuon (Xmn) mass mixing matrices, which satisfy:

N∗Mχ0N † = diag(mχ0
1
, mχ0

2
, mχ0

3
, mχ0

4
)

U∗Mχ±V
† = diag(mχ±1

, mχ±2
)

XM2
µ̃X
† = diag(m2

µ̃1
, m2

µ̃2
)

where each mass shown in the diagonalized matrix is a mass eigenstate of the neutralino, chargino,
and smuon respectively. The mass matrices for the chargino and smuon are:

Mχ± =

(
M2

√
2mW sin β√

2mW cos β µ

)

and:

M2
µ̃ =

(
m2
L +

(
sin2 θw − 1

2

)
m2
Z cos 2β mµ

(
A∗µ̃ − µ tan β

)
mµ (Aµ̃ − µ∗ tan β) m2

R −m2
Z sin2 θw cos 2β

)
These matrices, along with the neutralino mass matrix from earlier, determine our phase conven-
tion for the parameter µ. (Aµ̃ is a constant parameter here, not our electromagnetic potential from
earlier.) Furthermore, θw is the usual weak mixing angle that we defined earlier. We can now
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Figure 7: Unification of mass parameters at high energies in a MSUGRA model.

study these results for various values of the parameters that appear, in order to see what would be
consistent with the experimental value of δaµ. As a typical example, we can consider the "minimal
supergravity" (MSUGRA) scenario for SUSY breaking. This makes specific assumptions about
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the superpartner masses and their couplings, with the result that, at high energies (where our the-
ories all unify and become simpler), there are only three independent mass parameters, known as
m1/2, m0, and A0. m1/2 is a gaugino mass parameter for which M1, M2, and M3 all converge
at unification. m0 is a scalar mass parameter for squarks and sleptons, and A0 parameterizes a
three-point coupling between scalars. From inputting these values with tan β, we can calculate all
other masses and couplings.

In Fig. 7, we show a typical expectation for theories like MSUGRA. The horizontal axis shows
the energy scale while the vertical axis is our mass scale. We see that at low energies, the pattern
of masses looks fairly complicated, but that at high energies, these masses converge and the model
simplifies considerably.

To present some illustrative calculations, we used the programs SOFTSUSY [8] and Super-
model ([9]) to determine the couplings. SOFTSUSY takes the MSUGRA inputs for each param-
eter and Supermodel translates these into the couplings and masses that are needed. We can then
assemble the results from eqs. (61) and (62).

In Fig. 8, we show the resulting SUSY contributions to aµ as a function of the lightest chargino
and smuon masses, and for three different values of tan β. The ±1σ and ±2σ bounds are also

Figure 8: aµ arising from supersymmetry as a function of lightest chargino and smuon masses, for
different values of tan β. Horizontal lines show the 1 and 2σ bounds from E821.

shown. From this we can easily identify values of the various parameters that are consistent with
the experimental results. Of course, there are many other experimental constraints that would also
need to be satisfied.

As another example, consider a simplified scenario where we assume that all the superpartners
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have the same mass, MSUSY . In that case, eqs. (61) and (62) can be combined and simplified to:

δaSUSYµ =
tan β

192π2

m2
µ

M2
SUSY

(
5g22 + g21

)
= 14 tan β

(
100 GeV

MSUSY

)2

10−10

Now the results depend only on two parameters, tan β and MSUSY , instead of all the parameters
we defined earlier. Fig. 9 shows the ranges of tan β and MSUSY that correspond to the observed

Figure 9: SUSY contribution to aµ assuming all superpartners have the same mass, as a function
of tan β and MSUSY . The solid line on the left shows the E821 central value; dashed lines show
the 1s and 2σ bounds.

discrepancy in aµ (solid line) and the 1σ and 2sigma ranges. One expects that 3 < tan β < 60

and MSUSY must be at least 100 GeV to evade the direct detection bounds coming from the LHC.
Therefore, if we believe that the discrepancy between the values is at most 1σ from what was

actually measured, we can constrain the mass of the superpartners and use that in our model.
From this, we could proceed to search for different models that match the aµ discrepancy and

perhaps discover the true underlying theory beyond the Standard Model. However, these models
must also satisfy other experimental constraints, like the Higgs mass, coming from searches at the
LHC and any earlier experiments. Currently, major experiments at CERN, Fermilab, and around
the world are being run to try and uncover the new principles that take us beyond the Standard
Model.

Furthermore, at Fermilab, the E989 experiment is set to begin collecting data this year on new
measurements for aµ. The experiment aims to be much more precise than the E821 experiment
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and therefore lower the uncertainty on δaµ. Therefore, in a couple of years, the more precise
measurements may close the gap between theory and experiment, or they may widen that gap
and provide considerable indirect evidence that there are aspects of our universe still yet to be
discovered and understood.
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Appendix A Commutator of the Covariant Derivative

Here, we show that i[Dµ, Dν ] = eFµν . Since Dµ = ∂µ − ieAµ, we have:

i[Dµ, Dν ] = i(∂µ − ieAµ)(∂ν − ieAν)− (∂ν − ieAν)(∂µ − ieAµ)

It should be imagined that this acts on a function standing to the right of our expression. To simplify
this, I will use the fact that:

[∂µ, ∂ν ] = 0 [Aµ, Aν ] = 0

leaving:
i[Dµ, Dν ] = i(−ie)(∂µAν − Aν∂µ + Aµ∂ν − ∂νAµ)

Next, we recall that this expression is actually multipled by a function, ψ. Therefore, we can
distribute this function and then use the product rule to obtain:

i[Dµ, Dν ]ψ = e(ψ∂µAν + Aν∂µψ + Aµ∂νψ − Aν∂µψ − ψ∂νAµ − Aµ∂νψ)

We cancel terms and conclude:

i[Dµ, Dν ]ψ = e(∂µAν − ∂νAµ)ψ

However, ∂µAν − ∂νAµ = Fµν which leads to the final result:

i[Dµ, Dν ] = eFµν
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Appendix B The Gordon Decomposition

To prove the Gordon Decomposition, we first start with the expression:

u(p′)(�p
′γµ + γµ�p)u(p) (63)

We can manipulate this expression in two different ways that will ultimately lead to the final result
of the Gordon decomposition used in our QED one loop correction.

The first way will use our definitions of gµν and σµν to put eq. (63) in terms of these values.
We first rewrite eq. (63):

u(p′)(p′νγ
νγµ + γµγνpν)u(p)

It can be shown using our definitions of the gamma matrices and σµν that:

γµγν = gµν − iσµν

Using this relation results in:

u(p′)[p′ν(g
νµ − iσνµ) + (gµν − iσµν)pν ]u(p)

We know that σµν is defined to be antisymmetric so using that fact and rearranging terms, we
obtain eq. (63) is:

u(p′)[(p′ + p)µ + iσµν(p′ − p)ν ]u(p) (64)

Our second way of manipulating eq. (63) is to use the Dirac equation which says:

(�p−m)u(p) = 0 u(p)(�p−m) = 0

This allows to rewrite eq. (63) as:

u(p′)[mγµ + γµm]u(p)

which leaves us with:
2mu(p′)γµu(p) (65)

Finally, since eq. (64) and eq. (65) are both equivalent to eq. (63), we can set them equal to each
other and get the equation for the Gordon Decomposition:

u(p′)γµu(p) = u(p′)

[
(p′ + p)µ

2m
+ iσµν

(p′ − p)ν
2m

]
u(p) (66)
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Appendix C Feynman Rules

Here, we state the Feynman rules for QED and the electroweak theory, used in our calculations.

C.1 Feynman Rules for QED

First, on the associated diagram, each line must be notated with a specific momentum in a specific
direction and each vertex must be given a contravariant index, like µ, ν, etc.We then start along the
fermion lines and work our way backwards, having outgoing electron/muons contribute a u and
incoming contribute a u. Along the fermion lines, each vertex between two fermions and a photon
contributes a factor:

ieγµ

and each internal electron/muon line contributes:

i

��k −m

where k is the momentum of that internal line. After moving along the fermion lines, we add on
any factors from internal photons:

−igµν
k2

where again k is the momentum of the photon and the indexes associated with the Minkowski met-
ric result from the two vertices of the internal photon. We then for each vertex ensure conservation
of energy and momentum by adding a delta function term:

(2π)4δ4(p+ k − q)

If the particle is moving towards the vertex, its momentum will be positive and if it is moving away,
we make it negative. Furthermore, for every internal line, we integrate over its four momentum,
contributing:

d4k

(2π)4

After integrating over these internal lines’ momenta, we will be left with one integral for each
closed loop in our diagram. We will also be left with one delta function multiplied by (2π)4 which
we proceed to then drop. Finally, we multiply the entire expression by a −i.

When using the Feynman rules, it is of the utmost importance that one follows the fermion lines
backward first so that one gets the correct mathematical expression (row·matrix·column) under the
integral. Following these rules, one can arrive at eq.(14) and then use it to find the anomalous
magnetic moment of a fermion, as done in this thesis.
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C.2 Feynman Rules for EW Theory

For EW theory, we work in a general renormalizable gauge where ξ = 1. [4]. The rules here will
follow the same procedure as with QED but with different factors from vertices and internal lines.
The first interaction we investigate is that involving the Z boson. The vertex factor for a lepton
coupled to the Z boson is:

−ig
4 cos θw

γµ
[
(1− 4 sin2 θw)− γ5

]
Here, we have introduced g and θw, the weak coupling constant and the weak mixing angle re-
spectively. The weak mixing angle is a constant that relates the masses of the Z and W boson,
which we will numerically evaluate later. Furthermore, we have introduced a new gamma matrix,
γ5, defined as:

γ5 = iγ0γ1γ2γ3

This unique gamma matrix will appear throughout our calculation of the weak corrections. Next,
the propagator for the Z boson is:

−igµν
k2 −M2

Z

where k is the momentum and MZ is the mass of the Z boson.
The Z Goldstone boson has its own unique rules, as well. Its propagator term will be:

i

k2 −M2
Z

and its vertex factor becomes:
gm

2MW

γ5

where m is the mass of the lepton and MW is the W boson’s mass.
We also calculate the contribution from the W boson. Since it is part of the EW theory, it will

also have Goldstone boson diagrams. The W boson is unique in that each vertex with a lepton will
also be connected to a neutrino. For the W boson, the vertex factor if it is connected to a lepton
and neutrino is:

−ig
2
√

2
γµ(1− γ5)

where g is again the weak coupling constant. The propagator is:

−igµν
k2 −M2

W

the same as the Z boson’s term, but with MW , the mass of the W boson, switched in for MZ . If
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the W boson is coupled to another W boson and a photon, however, the vertex factor is:

−ie [gµν(q
′ + k′)α − gνα(k′ + q)µ + gαµ(q − q′)ν ]

where q′ is the momentum of the incoming W boson, q is the momentum of the incoming photon,
and k′ is the momentum of the outgoing W boson.

For the W Goldstone bosons, the propagator term is:

i

k2 −M2
W

which is the same as for the Z Goldstone boson with MW substituted in for MZ . There are four
new vertex factors to define. The first two are for a vertex connecting a lepton, neutrino, and
Goldstone boson:

−ig
2
√

2

(
1± γ5

) m

MW

The sign associated with the γ5 will be negative if the neutrino is incoming and the lepton is
outgoing, positive if they are flipped. The third vertex factor results from connecting a Goldstone
boson, a photon, and a W boson:

−ieMWgµν

Lastly, a connection between two Goldstone bosons and a photon has a vertex factor of:

−ie(p+ p′)µ

where p is the momentum of the incoming Goldstone boson and p′ is the momentum of the outgo-
ing Goldstone boson. We can now use these new rules to calculate the contributions to aµ from the
Z boson and W boson, starting with the Z boson.
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Appendix D Contraction Theorems

In many of our calculations to extract aµ, we have made use of various contraction theorems that
help us to eliminate gamma matrices. I will now prove to you two of them specifically and will
leave it to the reader to prove the rest that I list.

From the anticommutation relation, we have a list of contraction theorems:

(1) γµγ
µ = 4

(2) γµγ
νγµ = −2γν

(3) γµγ
νγλγµ = 4gνλ

(4) γµγ
νγλγσγµ = −2γσγλγν

The first that I will prove is (2):
γµγ

νγµ = −2γν

We will use the anticommutation relation for gamma matrices to prove this:

γµγν + γνγµ = 2gµν

We multiply both sides by γµ and simplify:

γµγ
µγν + γµγ

νγµ = 2γµg
µν

From (1) and acting with the Minkowski metric:

4γν + γµγ
νγµ = 2γν

Getting the γν’s on the same side, we conclude:

γµγ
νγµ = −2γν

The other one that I wll prove is (4). As before, we will make use of the anticommutation relation:

γµγ
νγλγσγµ = γµγ

νγλ(2gσµ − γµγσ)

Multiplying out our terms:

γµγ
νγλγσγµ = 2γσγνγλ − γµγνγλγµγσ
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Using (3) and the anticommutation relation again:

γµγ
νγλγσγµ = 2γσ(2gνλ − γλγν)− 4gνλγσ)

Multiplying out terms and canceling the γσ terms, we obtain:

γµγ
νγλγσγµ = −2γσγλγν
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