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Concerns about Least Squares Estimation for the 
Three-Parameter Weibull Distribution: Case Study of 

Statistical Software 
 

William V. Harper1, Thomas R. James1 
1Mathematical Sciences, Otterbein University, One S. Grove Street, Westerville, OH 

43081-2006 
 
Abstract 
Least Squares estimation of the 2-parameter Weibull distribution is straightforward; 
however, there are concerns for the estimation of the 3-parameter Weibull. The third 
parameter for the 3-parameter Weibull distribution shifts the origin from 0 to some 
generally positive value sometimes called the location, threshold, or minimum life. The 
different methods used by the packages sometimes result in fairly major differences in the 
estimated parameters between the statistical packages. This may have implications for 
those needing to estimate or apply the results of a 3-parameter Weibull distribution that is 
used frequently in practice. The results are analyzed based on an experimental design using 
pseudo-random Weibull data sets.  
 
Key Words: Reliability, Least squares parameter estimation, Weibull 
 

1. Introduction 
 
When performing a statistical test or building a statistical model the analyst generally 
expects the key statistical results to be the same from different software packages. For 
example, in linear regression one anticipates obtaining the same equation independent of 
the software package. Options may vary from one package to another, such as for 
regression diagnostics and graphics. Similarly, when doing estimation of a distribution’s 
parameters, one might find different goodness of fit tests (e.g., chi-square, Kolmorgov-
Smirnoff, Cramer von-Mises, Anderson-Darling), and graphical output (e.g., probability 
plots, empirical distribution functions, P-P plots, Q-Q plots). But one expects the same 
parameter estimates within rounding. 
 
This expectation is not met for estimation of the 3-parameter Weibull. The 3-parameter 
Weibull has been documented in the past as a challenge when finding maximum likelihood 
estimates (MLEs) though such studies were not based on modern statistical software 
packages until recently. Harper, Eschenbach, and James (2011) highlight fairly major 
differences in estimated parameters between the statistical packages when maximum 
likelihood is used. This new article examines the use of least squares (LS) approaches in 
three statistical packages. Such differences are important as the 3-parameter Weibull 
distribution is widely used in practice and least squares estimation is the recommended 
approach under various circumstances in engineering distribution fitting software. 
 
This research began with the use of Minitab for distribution fitting related to oil spill data 
in the Gulf of Mexico as documented in Eschenbach, Harper (2006) and Eschenbach, 
Harper, Anderson, Prentki (2010). In using additional statistical software packages, it was 
noted that the MLEs varied more than anticipated. This led to a literature search as well as 
the use of multiple software packages.  The results of the investigation are documented in 
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Harper et al (2011).  This new article partially follows their MLE work but with LS 
methods.  The MLE article was ambitious in that it compared 10 MLE methods; whereas, 
only 3 LS alternatives are compared in this article. 
 

2.   3-Parameter Weibull Distribution 
 
This section briefly summarizes the 3-parameter Weibull literature found to be germane to 
the Weibull differences encountered across statistical packages.  One of the challenges of 
a literature search is keeping track of both the Weibull parameter notation and the 
terminology.  Below are the pdf and cdf used in this article. 
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In this notation γ, the 3rd Weibull parameter goes by a variety of names such as location, 
minimum life, threshold, origin, guaranteed minimum life, guaranteed life, and shift.  α is 
generally called the scale and β is either shape or slope (typically in probability paper or 
rank regression based approaches).  Estimation of the standard 2-parameter Weibull where 
γ = 0 is straightforward and comparable results are found across statistical packages.  
However, the 3-parameter Weibull estimates are problematic. 
 
The American Statistician has published articles over the last 20 years involving the 
Weibull distribution including Haughton (1997), Perry (1998), Owen, Sinha, and 
Capozzoli (2000), and Hilbe (2007).  The American Statistician has also documented other 
estimation problems in articles including Haughton (1997), Altman (2002), Hilbe (2002), 
Langohr and Gomez (2005), and Oster and Hilbe (2008).  Yalta (2007) also documents 
other statistical distribution estimation problems in one software package. 
 
We found comments in Oster and Hilbe (2008) and Hilbe (2008) to be very meaningful.  
Oster and Hilbe (2008) identify that “... maximum likelihood inference (unconditional or 
conditional) may provide incorrect results, or may fail to provide any results at all, ...”.  
While their comment deals with maximum likelihood it is not limited to just that estimation 
technique as this paper illustrates with least squares estimation.  Hilbe (2008) nicely states 
the following two items which we have come to appreciate much more as a result of our 
investigation: 

 “But not all statistical applications have the same capabilities, nor the same 
reliability.” 

 “At other times, of course, we discover a host of difficulties, or major 
inadequacies.” 

 
3.  Software Packages Analysed 

 
Some statistical packages offer only maximum likelihood estimates for Weibull 
distribution fitting.  Maximum likelihood generally has much to offer (consistency, 
asymptotic normality, and asymptotic efficiency) but such properties are based on large 
samples.  In practice large samples may not be available and thus the often stated 
advantages of maximum likelihood estimation may not applicable to moderate sized 
samples.  In some engineering oriented reliability packages and associated documentation 
the recommended procedure is to use a least squares approach in numerous circumstances 
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to estimate the Weibull distribution for both the two and three parameter Weibull 
distribution fitting.  This paper examines three packages for the 3-parameter Weibull based 
on least squares estimation.  A subsequent paper is planned comparing both least squares 
and maximum likelihood estimation based on commercial statistical packages. 
  
Minitab 17 is a general purpose statistical package.  Weibull++9 is developed by ReliaSoft 
and has a book (ReliaSoft, 2005) available for either purchase in hard copy or 
downloadable free from the web.  Weibull++9 is part of a suite of reliability based software.  
SuperSMITH Weibull (version 5.0CH) is a statistical reliability package (Fulton Findings, 
LLC) featured in The New Weibull Handbook (Abernethy, 2006).  These are the three 
packages compared for least squares fitting of the three parameter Weibull distribution. 
 
3.1 Plotting Positions 
 
Each observation has both an X and Y value.  The X value is typically the failure time in 
reliability data.  For this paper it is the pseudo-random three-parameter Weibull values 
generated.  The Y value is an estimate of the cumulative proportion of observations that 
have “failed” by the “time” of the X value where failed and time is used to give a common 
instance for the Weibull distribution.  There are multiple ways to obtain this Y value but 
this paper will focus on the two most common median rank based approaches used for 
Weibull distributions.  For the Weibull distribution both SuperSmith and Weibull++9 use 
the exact median rank approach while Minitab uses Bernard’s approximation for median 
ranks.  Both of these are explained further below. 
 
3.2 Median Ranks 

The Median Ranks method is used to obtain an estimate of the probability of failure (or 
unreliability as sometimes called in engineering texts) for each of the units. The median 
rank is the value that the probability of failure should have at the jth failure out of a 
sample of N units.  The median rank is obtained by solving this equation for Z at P=0.50: 

0.50 ൌ ෍ሺ

ே

௞ୀ௝

ሻ௞
ே ܼ௞ሺ1 െ ܼሻேି௞ 

For example, if N = 4 and we have four failures, we would solve the median rank equation 
for the value of Z four times; once for each failure with j = 1, 2, 3 and 4. This result can 
then be used as the unreliability estimate for each failure or the y plotting position. 
 

3.3 Exact Beta and F Distributions Approach (Weibull++, SuperSmith) 

A more straightforward and easier method of estimating median ranks is by applying two 
transformations to the cumulative binomial equation, first to the beta distribution and 
then to the F distribution, resulting in the below where m =2(N-j+1), n = 2j, and F0.50; 
m; n denotes the F distribution at the 0.50th percentile (median), with m and n degrees of 
freedom, for failure j out of N units.   
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3.4 Benard's Approximation for Median Ranks (Minitab) 

A quick approximation of the median ranks is also given by: 

MR ൌ
j െ 0.3
N ൅ 0.4

 

Various studies including Rinne (2009) and Lawless (2003) have shown that the above and 
other ranking schemes do not have a major impact on the results.  This is further supported 
later when the Minitab and SuperSmith results are often close. 

3.5 Least squares estimates versus maximum likelihood estimates 

Least squares estimates are calculated by fitting a regression line to the points in a 
probability plot. The line is formed by regressing time to failure X on the transformed 
median rank Y.  Maximum likelihood estimates are calculated by maximizing the 
likelihood function.   Some of the claimed advantages of each method follow. 

3.5.1 Least squares 

 Better graphical display to the probability plot because the line is fitted to the 
points on a probability plot. 

 For samples with little censoring, least squares may be more accurate than MLE, 
especially for small samples. 

3.5.2 Maximum likelihood 

 Distribution parameter estimates are more precise than least squares especially 
for large samples. 

 For samples with heavy censoring, maximum likelihood is more accurate than 
least squares. 

 Maximum likelihood will work when there are no failures. 
 The maximum likelihood estimation method has attractive mathematical 

qualities. 

When possible, both methods might be tried; if the results are consistent, then there is 
more support for the conclusions. Otherwise, one should consider the advantages of both 
approaches and make a choice for the particular problem.  Minitab does not take a public 
stance.  Below are 5/1/2015 email quotes from Wes Fulton (SuperSmith) and David 
Groebel (Weibull++) both providing their good advice.  Regression as used below is least 
squares. 

James W. (Wes) Fulton of Fulton Findings LLC (SuperSmith): Generally, not for 
the specific 3parameter solution, I would say that we recommend to start with the 
graphical method AND then if there is any question about the solution you 
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should compare it to the likelihood result. For small samples, Dr. Abernethy's 
reduced bias adjustment "RBA" removes most of the small sample bias in the 
likelihood solution for the slope. If those two different techniques reasonably 
agree, then you have a solid solution, otherwise you have useful information. If 
the graphical slope is significantly higher than the likelihood slope, you probably 
have a subpopulation that will not fail by the failure mechanism under analysis 
(we informally call that a "batch" issue). Now for the 3parameter solution, we 
recommend larger samples only as it is very difficult to find the correct third 
parameter shift for small samples anyway as you know. So we know there are 
benefits to using both graphical and likelihood methods, and that is easy to do 
now in modern software. 

David Groebel from ReliaSoft (Weibull++): In general, we do say that with 
complete data, particularly with small sample sizes, that we recommend 
regression. Assuming Beta is greater than one, for complete data with sample 
sizes of 25, 50 and 100 using the 3p‐Weibull distribution, I would actually 
recommend MLE. As you know there will probably not be much of a difference 
between rank regression and MLE given these sample sizes. Given that, I would 
recommend MLE since it would probably help out with other statistics, such as 
confidence bounds, as these are based on MLE theory (Fisher Matrix and 
Likelihood Ratio). With these samples sizes, there most likely would not be 
much of a difference. However, as the sample size decreases then yes, I would 
recommend regression in that case. Bottom line, I do not think there really is a 
wrong answer in this case. 

 
3.6 Approaches to 3-Parameter Weibull Least Squares Estimates 

 

Two basic approaches were encountered in the software reviewed to develop the least 
squares estimates for a 3-parameter Weibull.  Minitab and SuperSmith both use an iterative 
trial and error approach to find an optimal threshold γ that maximizes the correlation (or 
similarly maximizes the R2) of the γ adjusted x, y values.  In this iterative process a search 
is made using proprietary approaches that assess both the search direction and when to 
terminate the search.  For a given iteration the current γ value is subtracted from the x 
values and these (x – γ) values are regressed on the y values.  Weibull++ uses a nonlinear 
technique based on a Nelder-Mead optimization approach to estimate γ. 
 

4. Experimental Design for Study of 3-Parameter Weibull 
 
Results for four initial real-world data sets (not shown here but in Harper et al, 2011) 
illustrated the diversity of results that statistical packages might provide, but it is hard to 
generalize from such results.  This section describes the choices for a 3 by 3 experimental 
design focused on the Weibull shape parameter (β = 0.5, 1.5, and 3.5) and the sample size 
(n = 25, 50, and 100) of the generated data sets.  Each statistics package is tested on a total 
of 270 pseudo-random data sets (9 settings with 30 simulated data sets).  For each generated 
pseudo-random data set, the location was set to 10 and the scale to 1.  A scale value of 1 is 
common in the literature simulations.  We wanted a location value different than zero to 
more fully distinguish the data from a 2-parameter Weibull. 
 
The first decision was to focus on the shape parameter β.  This is consistent with a broad 
array of previous work.  For example Goode and Kao (1961, 1962) developed reliability 
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sampling plans for the Department of Defense that are independent of the scale parameter 
and that describe the location factor as, “However, if γ has some known value other than 
zero the procedure and tables can be easily and simply modified to allow for this.”  
Similarly, Rinne (2009, p. 33) (where c is the shape parameter labelled β in this paper) 
states “As each WEIBULL density can be derived …, it will be sufficient to study the 
behavior of this one-parameter case depending on c only.”  Some simulation studies (Antle 
and Bain,1969; Thoman, Bain, and Antle, 1969 & 1970; Johnson and Haskell, 1983) 
explicitly address why only the shape parameter must be studied, while others (Cohen and 
Whitten, 1982) fix the location and scale parameter without stating the reason. 
 
Hirose (1991) states “the shape parameter β lies in an interval 0.5 ≤ β ≤ 3.5 in almost all 
cases.”  This is partially based on Cohen (1973) which says the values of β are usually 
“ranging from around 0.5 to perhaps 3.0 or 3.5”.  Cohen and Whitten (1982) state “values 
of δ in excess of 3.22 seldom occur” where δ is the shape in their paper.  We conclude 
based on multiple publications including Rinne (2009), for our purposes the shape 
parameter space may be collapsed into the following 3 groups (with our chosen values 
shown): 
 

1. 0 < shape ≤ 1    (0.5) 
2. 1 < shape ≤ 2    (1.5) 
3. Shape > 2          (3.5). 

 
Our choices of 25, 50, and 100 for the sample sizes are consistent with numerous other 
studies.  Thoman, Bain, and Antle (1970) varied n with a max of 100.  Johns and Lieberman 
(1966) varied n with a max of 100.  Archer (1980) varies n from 25 to 200 states on page 
61 “However, as n increases, the approximations approach the estimated variances until 
there is very little difference at n = 100.  Johnson and Haskell (1983) used samples sizes n 
of 70, 100 and 200.  Zanakis (1977) used n = 50, 100, 200.  Abernethy (2006) suggests n 
≥ 21 in general for any 3-parm Weibull and Meeker and Escobar (1998) suggested wanting 
n ≥ 100.   
 
The next choice was for 30 replications at each sample size.  Zanakis (1979) used 3 
replications.  Qiao, Tsokos (1995) used 50 random samples examining just one specific 
case.  Meeker and Escobar (1998) use 30 simulations for a censored two-parameter Weibull 
MLE.  Zanakis (1977) used a total of 225 test problems with replacement of ones that did 
not pass a Kolmogorov-Smirnov goodness of fit test for the 3-parameter Weibull (α = 0.1).  
We did a similar screening (discarding about 10% of the 270 generated sets) with the 
Anderson-Darling goodness of fit test (α = 0.10) to ensure that the pseudo-random data sets 
are reasonable 3-parameter Weibull distributions. 
 
The next choice was which metrics to use to measure package performance.  First, we 
discuss one that needed some modification to avoid the nonsensical result of a negative 
number of correct digits.  McCullough (1998) and Altman, Gill, and McDonald (2004) 
discuss the logarithm of the relative error (LRE), which measures the number of correct 

significant digits.  This is defined as  
10

log | |LRE q c c   where q is the MLE of a 

parameter and c is the correct answer (in this study the generating value).  Separate LRE 
statistics were computed for each of the three parameters.  The above LRE did go negative 
in the experimental runs, so we first tried a modification based on Kozluk (2002) and then 
a variation on that by the lead author (Harper et al, 2011).  The resulting metric described 
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below is LREKH where the K and H represent the last names of the source of the 
modifications.   
 

 
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Numerous metrics were computed: the least squares estimates themselves for all 3 
parameters, MSE (Mean Squared Error), MAE (Mean absolute error), MAPE (Mean 
Absolute Percentage Error), and LRE_KH for all 3 parameters.  This paper will focus on 
analysis of variance comparisons of the least squares shape parameter β between the three 
software packages. 
 

5. Least Squares Simulation Results 
 
For each of the nine design conditions a blocking Analysis of Variance (ANOVA) was 
run using Minitab’s General Linear Model procedure including Tukey’s post-hoc 
multiple comparison.  The blocking factor in the ANOVA is the replication number 
representing the particular replication of the 30 random data sets for each design point.  
The main effect of interest is the program (Minitab 17, SuperSMITH Weibull, ReliaSoft 
Weibull++).  By using a blocking ANOVA the variability due to the 30 different random 
replications is partitioned out and allows a more sensitive assessment of the main effect 
program. 
 
For all nine design points Tukey’s multiple comparison grouping output is given for a 
summary overview.  Then due to the 15 page JSM proceedings limit, only those design 
points with shape β = 0.50 are analyzed in more depth.  These are the design points where 
statistically significant differences are found between the three packages.  Each of these 
three design points has a box plot, a confidence interval plot, and a Tukey’s mean 
difference plot.  The box plot and confidence interval plot include a red dotted line at the 
design point value for the shape β.  The confidence interval plot uses a pooled standard 
deviation across all three packages.  The Tukey’s mean difference plot is another more 
visual way to show the results presented in the initial one page of all nine design point 
multiple comparisons.  The output metric of interest is the estimated least squares shape 
parameter (called Shape OLS).  Other metrics may be reported in subsequent papers 
including a comparison between maximum likelihood and least squares on this same 
design matrix. In the Tukey output means not sharing a common grouping letter are 
significantly different from each other at the specified confidence level (95% in this 
paper).   
 
Table 1: Tukey Multiple Comparison Procedure: (DOE n = 25, DOE Shape = 0.50) 
Program              N      Mean  Grouping 
SuperSMITH Weibull  30  0.503456  A 
Minitab 17          30  0.495514  A 
Weibull++           30  0.450659         B 
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Table 2: Tukey Multiple Comparison Procedure: (DOE n = 50, DOE Shape = 0.50) 
Program              N      Mean  Grouping 
SuperSMITH Weibull  30  0.518371  A 
Minitab 17          30  0.509093  A 
Weibull++           30  0.452381         B 
 
Table 3: Tukey Multiple Comparison Procedure (DOE n = 100, DOE Shape = 0.50) 
Program              N      Mean  Grouping 
SuperSMITH Weibull  30  0.532352  A 
Minitab 17          30  0.511819      B 
Weibull++           30  0.458617         C 
 
Table 4: Tukey Multiple Comparison Procedure (DOE n = 25, DOE Shape = 1.50) 
Program              N     Mean  Grouping 
Weibull++           30  2.29712  A 
Minitab 17          30  1.86524  A 
SuperSMITH Weibull  30  1.86524  A 
 
Table 5: Tukey Multiple Comparison Procedure (DOE n = 50, DOE Shape = 1.50) 
Program              N     Mean  Grouping 
Minitab 17          30  1.51084  A 
SuperSMITH Weibull  30  1.51079  A 
Weibull++           30  1.50894  A 
 
Table 6: Tukey Multiple Comparison Procedure (DOE n = 100, DOE Shape = 1.50) 
Program              N     Mean  Grouping 
Weibull++           30  1.60263  A 
SuperSMITH Weibull  30  1.57784  A 
Minitab 17          30  1.57781  A 
 
Table 7: Tukey Multiple Comparison Procedure (DOE n = 50, DOE Shape = 3.50) 
Program              N     Mean  Grouping 
Weibull++           30  4.07236  A 
Minitab 17          30  4.06933  A 
SuperSMITH Weibull  30  4.06929  A 
 
Table 8: Tukey Multiple Comparison Procedure (DOE n = 25, DOE Shape = 3.50) 
Program              N     Mean  Grouping 
Weibull++           30  5.32974  A 
SuperSMITH Weibull  30  4.32932  A 
Minitab 17          30  4.32927  A 
 
Table 9: Tukey Multiple Comparison Procedure (DOE n = 100, DOE Shape = 3.50) 
Program              N     Mean  Grouping 
Weibull++           30  3.80930  A 
SuperSMITH Weibull  30  3.76023  A 
Minitab 17          30  3.76013  A 
 
Figures 1-9 that follow are based on the least squares estimates of the Weibull shape 
parameter β with only the design β = 0.50. Captains in the picture refer to this as the Shape 
OLS while the figure titles use the labeling LS β for space purposes. On the box plots as 
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well as the interval plots the design value β is shown as a red dotted horizontal line that 
visually aids bias detection. 
 

 
Figure 1: Box plot of LS β for DOE n = 25, DOE Shape = 0.50 
 

 
Figure 2: Interval plot of LS β for DOE n = 25, DOE Shape = 0.50 
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Figure 3: Tukey means plot of LS β for DOE n = 25, DOE Shape = 0.50 
 
 
Figures 1-3 and the earlier Tukey multiple comparison tabular output indicate there is no 
statistically significant difference for this design point (n = 25, shape = 0.50) between 
Minitab 17 and SuperSMITH Weibull at the 95% confidence level; however, both are 
significantly different from Weibull++. More variability in the Weibull++ output is seen 
in the box plot plus a possible bias on the low end. Since the ANOVA, Tukey output, and 
the Confidence Interval plot all used a pooled standard deviation the increased variability 
of the Weibull++ estimates just contributes to the pooled standard deviation.  
 

 
Figure 4: Box plot of LS β for DOE n = 50, DOE Shape = 0.50 
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Figure 5: Interval plot of LS β for DOE n = 50, DOE Shape = 0.50 

 
 

 
Figure 6: Tukey means plot of LS β for DOE n = 50, DOE Shape = 0.50 
 
Figures 4-6 and the earlier Tukey multiple comparison tabular output indicate there is no 
statistically significant difference for this design point between Minitab 17 and 
SuperSMITH Weibull at the 95% confidence level; however, both are significantly 
different from Weibull++. The Weibull++ estimates also show a possible bias toward 
lower values. 
 
 

SuperSMITH WeibullWeibull++Minitab 17

0.54

0.52

0.50

0.48

0.46

0.44

0.42

0.40

Program

Sh
ap

e 
O

LS

0.5

95% CI for the Mean
Interval Plot of Shape OLS (DOE n = 50, DOE Shape = 0.50)

Individual standard deviations are used to calculate the intervals.

SuperSMITH Weibull - Weibull++

SuperSMITH Weibull - Minitab 17

Weibull++ - Minitab 17

0.100.050.00-0.05-0.10

Pr
og

ra
m

Individual standard deviations are used to calculate the intervals.

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs (DOE n = 50, DOE Shape = 0.50)
Differences of Means for Shape OLS

JSM2015 - Section on Physical and Engineering Sciences

1278



 
Figure 7: Box plot of LS β for DOE n = 100, DOE Shape = 0.50 
 

 
 

Figure 8: Interval plot of LS β for DOE n = 100, DOE Shape = 0.50 
 

 
Figure 9: Tukey means plot of LS β for DOE n = 100, DOE Shape = 0.50 
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Figures 7-9 and the earlier Tukey multiple comparison tabular output indicate there is a 
statistically significant difference for this design point between all three software package 
least squares estimates of the shape parameter β. The Weibull++ estimates also show a 
possible bias toward lower values while SuperSMITH Weibull shows a possible bias 
toward higher values.  
 

6. Summary 
 
This paper documents modern software issues in the least squares estimation the 3-
parameter Weibull distribution shape parameter β. It shows more than expected variability 
exists in results reported by different statistical packages. These differences may be critical 
for those who would use the 3-parameter Weibull. In practice it may be advantageous, 
where possible, to compute both least squares and maximum likelihood estimates using 
multiple packages and compare the results.  
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