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Algebras Having Bases Consisting Entirely of Units
Sergio Lépez-Permouth, Jeremy Moore, and Steve Szabo

ABSTRACT. We introduce a hierarchy of notions about algebras having a basis
B consisting entirely of units. Such a basis is called an invertible basis and
algebras that have invertible bases are said to be invertible algebras. The other
conditions considered in the said hierarchy include the requirement that for
an invertible basis B, the set of inverses B~ be itself a basis, the notion that
B be closed under inverses and the idea that B be closed under products. It
is shown that the last property is unique of group rings. Many examples are
considered and it is determined that the hierarchy is for the most part strict.
For any field F # F3, all semisimple F-algebras are invertible. Semisimple
invertible Fi-algebras are fully characterized. Likewise, the question of which
single-variable polynomials over a field yield invertible quotient rings of the F-
algebra F[z] is completely answered. Connections between invertible algebras
and S-rings (rings generated by units) are also explored.

1. Introduction

If an algebra A over a (not necessarily commutative) ring R has a basis B
consisting entirely of units then we say that B is an invertible basis and A is
an invertible R-algebra. The archetypes of this notion are group rings and field
extensions. The purpose of this paper is to initiate the study of invertible algebras.

Note that throughout this paper the definition of an algebra A over R will
only require that for r € R,a,b € A, r(ab) = (ra)b and not the common additional
requirement that r(ab) = a(rd) which makes the action of R on A ambidextrous. We
do this to allow group rings RG and matrix rings M,(R) over a non-commutative
ring R to be R-algebras. In lieu of this requirement we sometimes focus on bases
B such that R commutes with the elements of B, a property that does hold for
RG with basis B = G and for matrix rings M,(R) with, for example, the (non-
invertible) standard basis B consisting of the unit matrices. So, in principle, the
algebras considered in this paper are free as left modules and all bases considered
are, in fact, left bases.

For terminology and basic results on group rings, the reader is pointed in the
direction of the standard references [5] and [6].

We start out by introducing a hierarchy of properties (invertible-2, invertible-3,
and invertible-4) that strengthen the notion of invertibility and show that, for the
most part, the hierarchy is strict (Section 2). Exploring the possibility that an
invertible basis may be closed under products leads us to show that such property
is unique of group rings. In turn, that result yields an alternative proof of results
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220 SERGIO LOPEZ-PERMOUTH, JEREMY MOORE, AND STEVE SZABO

of Mabry [4] and Kuczma [3] stating that Hamel bases of proper field extensions
are not multiplicatively closed.

In the case when R is a field, invertible algebras are S-rings in the sense of [7],
i.e. a ring in which every element can be expressed as the sum of units. In fact, it
is not hard to see that invertible algebras over S-rings are themselves S-rings; this
is the content of Proposition 2.2.

In Section 3 we study the behavior of the various invertibility properties with
respect to standard constructions such as direct sums and rings of matrices, and
conclude that with few exceptions, semisimple algebras are invertible. Also in
Section 3 we characterize those single-variable potynomials over a field which induce
invertible quotient rings.

2. Definitions and Preliminary Results

A group ring A = RG is an R-algebra exhibiting the interesting property of
having a basis B == G whose every element is invertible. Similarly, f A=FE isa
field extension (or even a division ring extension) of a field R = F' then any basis of
E over F consists entirely of units. That property reasonably leads to the following
definition.

DEFINITION 2.1. Given an algebra A over a ring R, an invertible basis B is an
R-basis B such that each element of B is invertible in A. If A has an invertible
basis, A is called an invertible algebra.

It is easy to see that not all algebras are invertible, even when they are free R
modules. Consider, for example, the polynomial ring A = F[z] over an arbitrary
field F or, for a finite dimensional example, A = F3 @ F> which has dimension 2 as
a free module over F, but only one invertible element.

The purpose of this paper is to investigate the basic properties of invertible
algebras over rings and fields.

We notice that in the case R = F is a field, every invertible F-algebra A is an
S-ring (see the Introduction). Notice, however that Z is not an invertible algebra
over any field, yet Z is an S-ring. So, we extend our observation as follows.

PROPOSITION 2.2. An invertible algebra A over an S-ring R is itself an S-ring.
Proor. Straightforward from the definitions. O

A group ring also satisfies the property that the collection B~! of inverses of
the elements of the basis B = G equals (. This motivates the remaining three
definitions in this section.

DEFINITION 2.3. Given an algebra A over a ring R, an invertible-2 basis is an
invertible R-basis B such that the collection B~! of the inverses of the elements of
B also constitutes a basis. If A has an invertible-2 basis, A is called an invertible-2
algebra.

PROPOSITION 2.4. Let F' C E be a finite degree field extension, i.e. |E : F| <
00. Then there is a basis B for E over F' such that B is invertible-2.

PROOF. Since |E : F| < co, E = F(ay,a3,...,a,) for a; € E such that
F(o1,09,...,0i-1) # F(o1,02,...,0;). Let B; = {ai,af,...,af"} be a basis for
the extension F(ay, ag, ..., a;) over Fa1,ag,...,05_1). Then B = {af'ad? ... 0|1 <
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Ji < k;} is a basis for E over F. Let B~! = {ozl*j‘ozz_j2 ...a;¥n|1 < j§; < k;}. Con-
sider 3_yc5-1 BaA = 0. Multiplying by ook ... ok~ gives > xes B A = 0 which
shows B~1 is a linearly independent set. Since |B~!| = |B|, B! is a basis and thus
B is an invertible-2 basis. u

Next, we introduce two other properties of group rings that invertible algebras
may or may not have in general.

DEFINITION 2.5. Given an algebra A over a ring R, an invertible-3 basis is an
invertible R-basis B such that B is closed under inverses. If A has an invertible-3
basis, A is called an invertible-3 algebra. Notice that if B is an invertible-3 basis
then it follows easily that B = B~L.

LEMMA 2.6. Let A be an invertible algebra. Then A has an invertible basis B
with 1 € B.

PROOF. Let A = {v1,v2,...,Vn,...} be an invertible basis for A. Now multiply
each element of A by v]! to obtain a new set B containing 1. Let w € A. Then
wvy = Y7~ a;v;. Multiply by vy to obtain w = 327", ajv;v . Therefore, any
element in A can be represented as a linear combination of elements from B. Let
> ivivy 1 — 0. Then multiplying by v; we get >; a;v; = 0 which implies that
a; = 0 for all i as A is a basis. Therefore B is a linearly independent set and thus
a basis. : O

While, by the previous lemma, the existence of an invertible basis guarantees
the existence of an invertible basis containing 1 the same is not true in general
of invertible-3 bases, (see Example 2.9). For that reason we coin the following
definition.

DEFINITION 2.7. Given an algebra A over a ring R, an invertible-4 basis is an
invertible-3 R-basis which includes the identity. If A has an invertible-4 basis, 4 is
called an invertible-4 algebra.

The following hierarchy for algebras is obvious.
group rings C invertible-4 C invertible-3 C invertible-2 C invertible
The following three examples show that the first three inclusions are indeed
proper. However, while we show below an algebra with an invertible base that is
not invertible-2, we do not know yet an invertible algebra which is not invertible-2.
That is the subject of our fourth example below.

EXAMPLE 2.8 (Invertible-4 not Group Algebra). Consider A = %[:—ﬂr[ Then A
has 4 invertible elements, namely {1,1+z,14+y,1+z+y}. To form an invertible-4
basis, B, we must have 1 € B. Therefore, we must have two of the other three
remaining invertible elements. Since (1+z)(1+y)=(1+z+ y) we see that any
invertible-4 basis we form cannot be closed under products.

EXAMPLE 2.9 (Invertible-3 not Invertible-4). Consider A = %l}sl Then the
group of units of 4 is U(4) = {1,-1,1+2,1-2,~1+2,—1~2z}. Now, B =
{14z,1—z} is an invertible-3 basis for A over F. Hence, A is invertible-3. Since a
basis contains two elements and an invertible-4 basis contains the identity, if A had
an invertible-4 basis, it would have two elements {1,a} where a is self-invertible.
Besides the identity, -1 is the only self-invertible element. Since {1,—-1} does not
form a basis, A4 is not invertible-4.
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EXAMPLE 2.10 (Invertible-2 not Invertible-3). Consider A = ?ﬂf’yﬁd Let U(A)

be the group of units of A. Then U(A) {a+Bz+vy | a, ﬂ, v € F3,a # 0}. Note
that fora=a+ Bz +yw € U(A), e = (a+Bz+vyy) ' =a—-Pz—-vy. An
invertible-2 F-basis for A is {1 +z,1+y,1+z+y}. So A is invertible-2. Let B be
an invertible F-basis for A. Assume a € BNF. We know a~! = ba for some b € F.
So, any invertible-3 basis for A does not have constants in it. Since non-constant
units are not self-invertible in A, any invertible-3 basis for A has an even number
of elements. Since |B| = 3 it cannot be invertible-3. Hence, A is not invertible-3

The following example guarantees the existence of invertible bases that are not
invertible-2.

EXAMPLE 2.11. Let F be an algebraic extension of a finite field. Consider the
F-slgebra A = F(x) of rational functions as a sub-algebra of the field of formal
Laurent series F/((z)). By Corollary 2.3 of [1], A consists precisely of those Laurent
series that are (eventually) periodic. Since a periodic power series is of the form
12—(2?):‘ =p(x)(1+ 27 + 2% + --.) for p(z) a polynomial of degree less than j, where
JE Z*, then periodic power series are linear combinations of elements of the form

F-% with 0 < ¢ < j. It follows that eventually periodic Laurent series are generated
byG={z*| keZ}u {l—fi;; | 7 € Z*,0 < i < j—1}. Notice, however, that
G~ ¢ F[z,z~"] (the ring of Laurent polynomials). In particular, G=! does not

generate A. Any basis B contained in G will be an invertible basis that is not
invertible-2.

An alternate direction in which to explore properties of a group ring RG is by
considering the fact that G is an invertible basis which is closed under products. It
turns out that this property completely characterizes group rings.

PROPOSITION 2.12. If the R-algebra A has an invertible basis B which is closed
under products then B is a group G. If, in addition, R commutes with B then A is
a group ring.

PROOF. Let A have basis B = {v1,...,Vn,...}. Then ), oxvr = 1. Let v € B.
Then multiply through by v. So we have ), axvrv = v. But each vpv € Bas B is
closed under products. Therefore there exists ¢ such that ax = 0 for all k& # ¢ and
v; =1. Thus 1 € B.

Now let v € B. We claim v—! € B. Let 3, axvx = v~!. Multiply through by
v to obtain Y, apvrv = 1. Then there exists ¢ such that ax = 0 for all k¥ # i and
v; =v~L. But v; € B and so v~ € B. Therefore B is a group. ]

Proposition 2.12 has as a corollary which strengthens a result about field exten-
sions reported in [3] for reals over rationals and in general in [4]. Namely, Corollary
2.13 extends the result that no proper field extension has a basis that is closed under
multiplication.

COROLLARY 2.13. If a simple ring A is an invertible R-algebra with invertible
basis B # 1 then B is not closed under products.

PRrOOF. If such a basis existed then A would be a group algebra over R by
the above Proposition. But then A would have a proper ideal I (the augmentation
ideal). g
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3. General Results and Some Families of Invertible Algebras

In this section we study the behavior of the invertibility properties with respect
to standard constructions such as matrix rings and direct sums. We then apply
those results to characterize certain families of invertible algebras.

PROPOSITION 3.1. Let R be an arbitrary ring and n € Z*. Then M,(R) is
invertible-2 over R.

PrOOF. Consider the following: Let v,, be the identity matrix and A =
{eijli,j = 1,...,n} where e;; is the matrix unit with 1 in the i*#j®* coordinate
and zeros elsewhere. For i # j, let v;; = vpn + €5, For 1 <i<n—2, let vy =
Unn +Z?-_~i+1 €l,i+14+(—3) (mod n—i) —€uU- Let vn_1n—1 = Unn—€nnten—1,n+e€nn-1-
Now let B = {v;;{i,j = 1,...,n}. It is easy to see that B spans A. We will show

n

that B is also linearly independent. Let Z a;jvij; = 0. Now aj; = ay; = 0 for
i,j=1

i =2,...,n. As there is only one element with a 1 in each of these coordinates.

Similarly we have ay =0for2<l<n—2,andi=1+1,...,n—1and ay; =0 for

2<k<n-—2 and j = k+2,...,n. The diagonal coordinates from the positions

nn,...,22 give the following equations

Eaij + ann =0,
i#j

Z Qij +0n_1n-1 + ann =0,
i#j

n
Zaij + Zakk =0.
k=1

i#j
These equations imply a;; = 0 for i = 1,2,...,n — 1. Then anit1 + 04 = 0 for
i=1,2,...,n—2gives anit1 =0fori=1,2,...,n—2. Alsofork=2,...,n -2
we have agk+1 + z:.:ll @i = 0. Since a;; = 0 for ¢ = 1,2,...,n — 1 we have
akx+1 =0fork=2,...,n—2. For the n —1,n and n,n — 1 coordinates we obtain
the equations
n—1
Qp—1,n+ Zaii =0,
i=1

Onn-171 Gn-2,n-2 +apn-1= 0.

Therefore, ap—1,n = @nn—1 =0 Finally from the 1, 1 position we have the equation
n

Z a;; = 0, and since all entries are zero except for a,, we conclude oy, = 0.

i:j=l

Hence, B is an R-basis for My (R). - B

Now we have the inverses for v;; are as follows. If i # j then v;;" = vpn —€;5. If

i=jand i< n—1then vj;' = vj;. Also Vilino1 = Unn = €n—in-1+€n—1n +
€nn_1 — 2€nn. It is easy to see that these inverses form a basis also. O

The following example illustrates the bases for matrix rings introduced in
Proposition 3.1.
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EXAMPLE 3.2. For an arbitrary ring R, consider M3(R). Then B consists of:
: 1 1 A

[1 0 0 (1 1 0 1 01
v = 0 01 V12 = 010 Vg = 010
[0 1 0 [0 0 1| [0 0 1]
1 0 0] [1 0 0] [1 0 0]
V91 = 110 V2 = 011 Vo3 — 011
[0 0 1] [0 1 0] |0 0 1]
[1 0 0] [1 0 0] (1 0 0]
V31 = 01 0 VUzg = 0 1 0 Ugz = 0 1 0 N
[ 1 0 1] [0 1 1 | [0 0 1]
and B! consists of:
100 1 -1 0 1 0 -1
v l=100 1|ogt={0 1 0|ovg'=|01 0
0 10 0 0 1 00 1
[ 1 0 0 10 0 10 0
vt=] -1 10 wz'=[{00 1 |ovz'=[01 -1
| 0 0 1 01 -1 0 0 1
[ 1 0 0 1 0 0 1 00
vi=] 0 1 0 fwzt=]0 1 0 |vzp'={010
| -1 0 1 0 -1 1 001

PROPOSITION 3.3. Let T be invertible over S and S invertible over R. Then
T is invertible over R. If furthermore S invertible-2 (respectively, invertible-3 or
invertible-4) over R and,in addition, T has an invertible-2 (respectively, invertible-
8 or invertible-4) basis A such that S commutes with A then T is invertible-2
(respectively, invertible-3 or invertible-4) over R.

ProOF. Let A = {a;|i € I} be an invertible basis for S over R and B =
{b;l5 € J} be an invertible basis for T' over S. We claim C = {a;b;]i € I,j € J} is
an invertible basis for T' over R. Let }_, ; a;ja:b; = 0. Then }~.(37; osj50:)b; = 0.
Then for all j we must have ), a;ja; = 0 since B is linearly independent over S.
Then we must have a;; = 0 for all i and j since A is linearly independent over R.
Therefore, C is a linearly independent set over R. Nowlet z € T. Thenz =Y, j B;b;
where 3; € S and b; € T. Further, for each j we may write 8; = }; a;;a;; where
a;; € R and a;; € S. Then

TI= Z,ijj = Z(Z 01jaij)bj = Za,-j(aijbj).
j J i 1,3

Therefore, C is a generating set. Since C consists of invertible elements, C is an
invertible basis for T over R.

Assume now that the bases A and B above are in fact both invertible-2 and
that S commutes with A. Then, A~! and B~! are also bases. Furthermore, the
basis obtained from them in the way C was obtained from .4 and B coincides with
C~! by virtue of the fact that the elements of B~! C S commute with those in .4
and, consequently, with those in A~*. Therefore, C~! is a also basis and therefore
C is invertible-2.

The corresponding implications for the cases invertible-3 and invertible-4 follow
similar reasonings.

0O
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PROPOSITION 3.4. A simple finite dimensional algebra A over a field F has an
tnvertible-2 basis.

PROOF. Since A is simple and finite dimensional, there exists a finite dimen-
sional division ring extension K of the field F and A = M,(K). Now apply Propo-
sition 2.4 and Propositions 3.1 and 3.3. g

PROPOSITION 3.5. Let A and B be finite dimensional invertible (invertible-2)
algebras over a ring R such that there exists x € R such that z is invertible and
1—z is invertible. Then C = A® B is a finite dimensional invertible (invertible-2)
algebra.

Proor. Let A and B be invertible bases for A and B respectively. Let

C = (A,b1) U (a1, B\ {1}) U {(a1,zb1)}

fora; € A, by € B and r € R such that z is invertible and 1 — « is invertible.
Clearly C ¢ U(C). Consider

0= Zaa(avbl) + Z ﬂb(al,b)‘*")'(alazbl)
acA beB\{b1}
for aq, B,y € R. So,
(Z aq +yz)b1 + E Brb =10

acA beB\{b:1}

and
(@q, + Z By +v)a1 + Z aqa =0.
beB\{b1} acA\{a1}

By linear independence we have that for a € A\ {a1}, @, = 0 and for b € B\ {1},
By = 0. Then

(g, +yx)b1 =0
and

(g, +7)a1 =0.
This implies a,, = v = 0 which shows C is a linearly independent set. Now we have

(A, b)) ~ [(1— 2)"Y(az,b1) — (1 — 2) "} (ar, 2b1)] = (4,0).

Therefore, we can generate anything of the form (A,0) and thus generate (0,B).
Following the same argument above it can be shown that if A and B are invertible-2
then C is an invertible-2 basis. Therefore, A @ B is invertible-2. 0

Rings in which the identity is the sum of two units have appeared earlier in the
literature. In particular, in [2], right self-injective rings in which the identity is the
sum of two units are characterized as being precisely those right self-injective rings
that do not have any quotient ring isomorphic to 5.

PROPOSITION 3.6. A finite direct sum of invertible algebras over a right self-
injective ring R which does not have a factor ring isomorphic to Fy is also an
invertible algebra over R. :

Using Proposition 3.5, it can be shown that any finite direct sum of of algebras
with a finite invertible basis will have a finite invertible basis. This leads to the
following interesting Corollary.
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COROLLARY 3.7. Any finite dimensional semisimple algebra over a field F # F,
is invertible.

PROOF. A consequence of Lemma 3.4 and Proposition 3.5. O

REMARK 3.8. F» @ F} is a finite dimensional semisimple non-invertible algebra
over F,, showing that Corollary 3.7 cannot be extended further.

DEFINITION 3.9. An invertible Fy-algebra is nice if there exists an invertible
basis containing a subset of an even number of elements whose sum is invertible.

LEMMA 3.10. Let A be an invertible algebra over F». If there exists an invertible
element a € A such that it is the sum of an even number of invertible elements from
A then A does not have a factor ring isomorphic to Fy. In particular, nice invertible
algebras do not have a factor ring isomorphic to F3.

PROOF. Assume A has an ideal I such that A = -’} >~ [, Let a € A be
invertible. Assume @ = a; + -+ - + a, such that a;,...,a, € A are invertible where

niseven. Since A2 Fy,dy=---=d, =08 #0. So,a; =e+b; forsomeec A
invertible and b; € I. Thena=ne+b; +---+b, =by+---+b, € I. Thisisa
contradiction since a ¢ I. O

Since Fy @ F} is not an invertible algebra we must address the question of when
the direct sum of Fy-invertible algebras is invertible. That is the subject of the
following three propositions.

PROPOSITION 3.11. Let A and B be finite dimensional invertible algebras over
F,. Assume A 1is nice. Then C = A ® B is invertible.

Proor. Let A and B be invertible bases for A and B respectively. Let a € A
such that it is the sum of an even number of elements from A. Let

C = (Ab1)U (a1,B\ {01}) U{(a,b1)}
for a; € A and b; € B. Similarly as in Proposition 3.5, it can be shown that C is
an invertible basis for C. O

PROPOSITION 3.12. Any factor ring of an invertible algebra over a field F is
also invertible.

PRrRoOOF. Let A be a finite dimensional invertible algebra over a field F and
I < A. Let B be an invertible basis for C and define A = —’}. Since B consists of
invertible elements it is clear that B = {v+ I|v € B} is a spanning set of invertible
elements for A. So, there is a subset of B that is a basis for A. O

PRrOPOSITION 3.13. An invertible algebra over Fy that is a direct sum of in-
vertible algebras has at most one direct summand isomorphic to F.

ProOOF. Let A be a finite dimensional invertible algebra over F,. Assume A
has multiple copies of F, as direct summands. Let I,J<9A suchthat A=16&J
and I & F, & F5. By Proposition 3.12, I is also an invertible algebra. Example
7? shows Fy @ F3 is not invertible. Therefore, this is a contradiction and A cannot
have multiple copies of F, as direct summands. O

We will consider next the invertibility of factor rings of polynomial rings over a
field in one variable. We will give a complete characterization on which ones have
an invertible basis.
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PROPOSITION 3.14. Let F # F; be a field. Then (5 is invertible-2 for all
f(z).

PROOF. Let f(z) = apnz™ + ap_12™ 1 + --- + a1z + ag with ag # 0. Since
ag # 0 we have z(a,z" ! + ap_12""%2 + .-+ + agx + oy) = —ag. Therefore, z is
invertible and so B = {1,z,%2,...,z"" '} is an invertible basis. We will show this
basis is actually invertible-2. Let 37" cyz™% = 0. Then multiply through by z"~1
and we obtain Y 7} ayz™1~% = 0. But since {1,z,22,...,2""1} is a basis, we
must have ¢; =0 for i =0,...,n~ 1. Thus B! = {1,z Y, z72,...,2~(® D} isa
basis for FF(%T
Now in the factor ring (EI[}])-, {z|j = 1,2,...,m — 1} consists of nilpotent elements.
Therefore, for every j, 1 + 27 is invertible. So 4 = {1}U{1+2/|j =1,...,m—1}.
Let vo = 1, and v; = 1+ z'. Then v;! = 1 and v;! = E;’;—Ol(—l)ja:ij. Let
Ei";;l a;v7! = 0. As a;vy ! is the only term including , @; = 0. So 2izt ot =
0 and ajvy ! is the only term including z2. Then ay = 0. Continuing this way we
obtain that a; = 0 for ¢ = 1,...,m — 1. It then follows that oy is also zero.
Therefore, A~!, having the same number of elements as A, is a basis.

It only rests to consider the case f(z) € F[z] with f(0) = 0 but f(z) not a power of
z. Under that assumption, by the Chinese remainder theorem, FF(%T = (—I[E])- & gﬁ([;—")l
for some positive integer m and g(z) such that g(z) # 0. The result then follows
from the first two cases and Proposition 3.5. [

PROPOSITION 3.15. Let F = F,. Then the factor rings A; = aﬁ!%n—) and

Ay = f—;—% are both invertible but neither is nice.

PROOF. The proof of the above proposition requires the hypothesis that F' be
other than F, only when it comes to applying Proposition 3.5 for the third case.
So, the same arguments as above show that A; and A, are invertible. The fact
that they are not nice is a consequence of Lemma 3.10. O

PROPOSITION 3.16. Let F = Fy and f(z) € F[z] then A = (TF(%% is invertible
if and only if z(x + 1) does not divide f(z).

PROOF. Let F = F; and A = % Write f(z) = 2™(z + 1)"g(x) where z
and (z +1) do not divide g(x). We show that A is invertible if and only if n-m = 0.
Suppose A = 2%%7 is invertible. Observe (L:l,% and ((_Ilj‘f‘[%])T; both have factor rings
isomorphic to 5. Then by Proposition 3.13 we can only have one direct summand
isomorphic to Fy. Therefore, either n or m must be 0.

Now suppose n - m = 0. Then either n or m is 0 then we have at most one direct
summand isomorphic to F» and by Proposition 3.13 we are done. O
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