Therapeutic Hypothermia Following Cardiac Arrest

Cassandra Patrick

Otterbein University, cassandra.patrick@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/stu_msn

Part of the Cardiovascular Diseases Commons, Medical Pathology Commons, and the Nursing Commons

Recommended Citation

Patrick, Cassandra, "Therapeutic Hypothermia Following Cardiac Arrest" (2014). Nursing Student Class Projects (Formerly MSN). 4.
https://digitalcommons.otterbein.edu/stu_msn/4

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in Nursing Student Class Projects (Formerly MSN) by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact digitalcommons07@otterbein.edu.
Therapeutic Hypothermia Following Cardiac Arrest

Casey Patrick, RN, BSN, CCRN
Otterbein University, Westerville, Ohio

Pathophysiology

The pathophysiology of brain injury following cardiac arrest is extremely complex. Due to the high metabolic demand, the brain is very susceptible to damage from deprivation of blood supply (Burt & Greer, 2010). Hypothermia is induced by the brain’s inability to recover from ischemic insults, which leads to death. The pathophysiology of brain injury following cardiac arrest and subsequent hypothermia-injured brain, as described by Burt and Greer (2010), involves:

- **Intracranial hypertension**
- **Hypoperfusion**
- **Inflammmation**
- **Ischemia-Reperfusion injury**
- **Hypoxic-Ischemic injury**
- **Excitotoxicity**
- **Mitochondrial damage**
- **Neuroprotection**
- **Sepsis**
- **Hypothermia**
- **Temperature regulation**
- **Hypotension and profuse diuresis**

Therapeutic Hypothermia (TH) is the only intervention shown to improve neurological outcomes following cardiac arrest (Lundby, Dym, & Hinsen, 2013). As described by Lundby, Dym, and Hinsen (2013), hypothermia is subdivided into four stages: (1) mild hypothermia (32°C to 34°C), which is estimated to occur out of hospital cardiac arrest (OHCA) patients survived and over 90% having good neurological outcomes at long term follow-up. Therapeutic hypothermia has results that can greatly impact the outcome of such a devastating pathophysiological injury.

Eligibility Criteria

Table 3 describes the eligibility criteria for therapeutic hypothermia (Malhotra et al., 2013).

<table>
<thead>
<tr>
<th>Eligibility Criteria</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial rhythm of ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT)</td>
<td>- Adipose tissue</td>
<td>- Allergy to intravenous catheters</td>
</tr>
<tr>
<td>Cardiac arrest related to trauma</td>
<td>- Major head injury</td>
<td>- Head injury with severe depression or skull fracture</td>
</tr>
<tr>
<td>Evidence of neurological response to commands after resuscitation</td>
<td>- Thermal instability</td>
<td>- Seizure activity</td>
</tr>
<tr>
<td>Hypothermia (32°C to 34°C)</td>
<td>- Severe metabolic acidosis</td>
<td>- Contraindication to deep hypothermia</td>
</tr>
</tbody>
</table>

Complications

Table 4 briefly lists the possible adverse effects of hypothermia treatment as described by Malhotra et al. (2013).

<table>
<thead>
<tr>
<th>Complications</th>
<th>Adverse Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>- Blood pressure (SBP > 90 mmHg) despite one vasopressor for >30 minutes</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>- Severe metabolic acidosis</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>- Severe hypotension and profuse diuresis</td>
</tr>
</tbody>
</table>