Photoinduced One-Electron Reduction of Alkyl Halides by Dirhodium(II,II) Tetraformamidinates and a Related Complex with Visible Light

Dean Johnston

Follow this and additional works at: https://digitalcommons.otterbein.edu/chem_fac

Part of the Chemistry Commons

Repository Citation
Photoinduced One-Electron Reduction of Alkyl Halides by Dirhodium(II,II) Tetraformamidinates and a Related Complex with Visible Light

Article in Inorganic Chemistry · July 2005
Impact Factor: 4.76 · DOI: 10.1021/ic048377j · Source: PubMed

6 authors, including:

Daniel A Lutterman
Oak Ridge National Laboratory
26 PUBLICATIONS 1,100 CITATIONS
SEE PROFILE

Dean H Johnston
Otterbein University
29 PUBLICATIONS 908 CITATIONS
SEE PROFILE

Judith Gallucci
The Ohio State University
350 PUBLICATIONS 6,015 CITATIONS
SEE PROFILE

Claudia Turro
The Ohio State University
160 PUBLICATIONS 3,928 CITATIONS
SEE PROFILE

Available from: Claudia Turro
Retrieved on: 08 July 2016
Photoinduced One-Electron Reduction of Alkyl Halides by Dirhodium(II,II) Tetraformamidinates and a Related Complex with Visible Light

Daniel A. Lutterman, Natalya N. Degtyareva, Dean H. Johnston, Judith C. Gallucci, Judith L. Eglin, and Claudia Turro*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, and Department of Chemistry, Otterbein College, Westerville, Ohio 43081

Received November 17, 2004

Various substituted dirhodium tetraformamidinate complexes, Rh₂(R-form)₄ (R = p-CF₃, p-Cl, p-OCH₃, m-OCH₃; form = N,N-diphenylformamidinate), and the new complex Rh₂(tpgu)₄ (tpgu = 1,2,3-triphenylguanidinate) have been investigated as potential agents for the photoremediation of saturated halogenated aliphatic compounds, RX (R = alkyl group). The synthesis and characterization of the complexes is reported, and the crystal structure of Rh₂(tpgu)₄ is presented. The lowest energy transition of the complexes is observed at ~870 nm and the complexes react with alkyl chlorides and alkyl bromides under low energy irradiation (λirr ≥ 795 nm), but not when kept in the dark. The metal-containing product of the photochemical reaction with RX (X = Cl, Br) is the corresponding mixed-valent Rh₂(II,III)X (X = Cl, Br) complex, and the crystal structure of Rh₂(p-OCH₃-form)Cl generated photochemically from the reaction of the corresponding Rh₂(II,II) complex in CHCl₃ is presented. In addition, the product resulting from the dimerization of the alkyl fragment, R₂, is also formed during the reaction of each dirhodium complex with RX. A comparison of the dependence of the relative reaction rates on the reduction potentials of the alkyl halides and their C–X bond dissociation energies are consistent with an outer-sphere mechanism. In addition, the relative reaction rates of the metal complexes with CCl₄ decrease with the oxidation potential of the dirhodium compounds. The mechanism of the observed reactivity is discussed and compared to related systems.

Introduction

The photoinduced reactivity of transition metal complexes has been widely explored for numerous potential applications. The conversion of solar energy has been an area of intense research for several decades with schemes that include photoexcited [Ru(bpy)₃]²⁺ (bpy = 2,2′-bipyridine) and related Ru(II) complexes, as well as other mononuclear complexes,⁵⁻⁷ bimetallic systems,⁸⁻¹¹ transition metal clusters,¹² and solid-state materials.¹³⁻¹⁵ The excited states of transition metal complexes are also able to photocleave DNA,¹⁶⁻²⁰ act

Notes:

a To whom correspondence should be addressed. E-mail: turro@chemistry.ohio-state.edu.

Current Address: P.O. Box 1663 MS G740, Los Alamos National Laboratory, Los Alamos, NM 87545.

The Ohio State University.

Otterbein College.

as probes of DNA structure, act as agents in photodynamic therapy, and can also be used in long-range electron transfer. In addition, the photochemistry of transition metal complexes toward alkyl and aryl halides has been investigated extensively in environmental photoremediation.

One successful method for photoactivated remediation makes use of the Fenton reaction. In the photo-Fenton system, acidic solutions of Fe(III) are photolyzed to generate Fe(II) and hydroxyl radicals. With excess H₂O₂ present, the Fe(II) is reoxidized to Fe(III), thus making the process photocatalytic. The photo-Fenton reaction has been found to successfully degrade pesticides, phenols, and halogenated hydrocarbons in water. However, CCl₄ and other saturated perhalogenated aliphatic compounds do not react well with hydroxyl radicals. Furthermore, these photoremediation processes require high-energy light in the UV or near-UV spectral region. Photochemistry initiated with visible and near-IR light is desirable for using the solar spectrum efficiently for such environmental transformations.

Rh₂(OC₂H₅)₄ was recently shown to possess a long-lived excited state (τ = 4.6 µs in CH₂Cl₂) that can be accessed with visible light (λ_{exc} = 532 nm). An excited state oxidation potential, E_{1/2} (Rh₂(OC₂H₅)₄^+), of −0.5 V vs NHE is predicted for Rh₂(OC₂H₅)₄ from E_{1/2} (Rh₂(OC₂H₅)₄^+ / Rh₂(OC₂H₅)₄) = +1.2 V vs NHE in H₂O and E₀₀ ≈ 1.7 eV. Although photoexcited Rh₂(OC₂H₅)₄ is not expected to reduce alkyl halides in aqueous media, the related dirhodium(II) formamidinate complexes are easier to oxidize, with ground-state oxidation potentials that range from −0.094 to +0.424 V vs NHE. Because of the shift in the oxidation potentials of these systems by 1.1−0.6 V relative to Rh₂(OC₂H₅)₄, the excited states of the dirhodium formamidinate complexes are expected to be significantly better reducing agents, thus making it possible for these complexes to reduce alkyl halides upon irradiation with visible light. The photoactivity of these complexes toward alkyl halides, if made catalytic, may be potentially useful for their decomposition.

The dirhodium tetraformamidates, Rh₂(R-form)₄ (R = p-Cl, p-Br, p-OCH₃, p-CH₃, p-CH₂Cl), whose structures are shown in Figure 1, absorb light throughout the visible region, with their lowest observable electronic transition at ≈870 nm. In addition, the variation of substituents on the formamidinate ligand provides a means to tune the oxidation potential of the complexes. The present work investigates the photoreactivity of the Rh₂(R-form)₄ (R = p-Cl, p-Br, p-OCH₃, p-CH₃) series of complexes, as well as that of the related new complex Rh₂(tpgu)₄ (tpgu = 1,2,3-triphenylyguanidinate), toward various alkyl halide substrates.

Experimental Section

Materials. RhCl₃·3H₂O was purchased from Strem and used as received. Dichloromethane, chloroform, 1,2-dibromoethane, bromoform, carbon tetrabromide, carbon tetrachloride, dibromomethane, sodium acetate, p-chloroaniline, p-methoxyaniline, p-trifluoromethyl-aniline, m-methoxyaniline, and triethylorthoformate were purchased from Aldrich and used without further purification. All other reagents were obtained from commercial sources. Dichloromethane, chloroform, 1,2-dibromoethane, and carbon tetrachloride were distilled from calcium hydride under a nitrogen atmosphere. Dichloromethane, chloroform, and carbon tetrachloride were freshly distilled from anhydrous calcium chloride and stored in a dry box under nitrogen. Dichloromethane, chloroform, and carbon tetrachloride were freshly distilled from anhydrous calcium chloride and stored in a dry box under nitrogen. Dichloromethane, chloroform, and carbon tetrachloride were freshly distilled from anhydrous calcium chloride and stored in a dry box under nitrogen.
solvents were obtained from Fisher and used as received. Each formamidinate ligand was prepared by gently heating the corresponding aniline and triethylorthoformate, followed by washing with copious amounts of hexanes.48 The ligand, 1,2,3-triphenylguanidine, was purchased from TCI America and was used as received. Rh\textsubscript{2}(µ-O\textsubscript{2}C\textsubscript{6}H\textsubscript{4}Cl)_\textsubscript{4}, Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}, Rh\textsubscript{2}(µ-O\textsubscript{2}C\textsubscript{6}H\textsubscript{4}Cl\textsubscript{−})\textsubscript{4}, Rh\textsubscript{2}(µ-CF\textsubscript{3}Cl\textsubscript{−})\textsubscript{4}, and Rh\textsubscript{2}(µ-Cl\textsubscript{−})\textsubscript{4} were prepared according to literature procedures.77

\textbf{Rh\textsubscript{2}(tpgu)_4}. Rh\textsubscript{2}(µ-O\textsubscript{2}C\textsubscript{6}H\textsubscript{4}Cl\textsubscript{−})\textsubscript{4} (0.6 mmol) and 1,2,3-triphenylguanidine (15 mmol) were added to a Schlenk vessel, placed under vacuum (≈10-2 Torr), and heated at 160 °C for 8 h. The excess ligand was removed by washing the sample with copious amounts of acetone on a filter frit, and the product Rh\textsubscript{2}(tpgu)_4 was dried under vacuum. The resulting olive green Rh\textsubscript{2}(tpgu)_4 \textsubscript{(tpgu = 1,2,3-triphenylguanidinate)} solid was dissolved in dichloromethane and layered with methanol to produce dichroic green/purple crystals suitable for X-ray diffraction. MALDI-TOF/MS resulted in the positive ion mode with a N\textsubscript{2} laser. The electrochemistry measurements were carried out with a fine Pt disk (Cypress or Bass) with a Pt-wire auxiliary electrode and a Ag/Ag+ pseudo-reference electrode. All potentials were determined by reference to the ferrocene/ferrocenium couple. 49 The hydrogen atoms bonded to the remaining nitrogen atoms were located on the difference electron density maps and were added to the model and refined isotropically. The hydrogen atoms bonded to the nitrogen atoms were located on the difference electron density maps and were added to the model and refined isotropically. The nitrogen atoms were located on the difference electron density maps and were added to the model and refined isotropically.

Methods. Photolysis experiments were conducted by adding the halogenated solvent to a given solid sample in the dark, followed by irradiation of the sample. Deoxygenation was performed either by bubbling the sample with argon for ~15 min and keeping it under positive argon pressure during the experiment, or through three freeze–pump–thaw cycles. The reaction progress was monitored by changes in the electronic absorption spectrum as a function of irradiation time. The power dependence experiments were carried out using neutral density filters which absorbed 0.1, 0.5, 0.6, and 1.0 throughout the visible region. Examination of the X-ray diffraction pattern indicated monoclinic and tetragonal crystal systems for Rh\textsubscript{2}(tpgu)_4 and Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}, respectively. The data collection strategy was designed to measure a quadrant of reciprocal space with a redundancy factor of 4.5 for Rh\textsubscript{2}(tpgu)_4 and 3.3 for Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}. The data collection strategy was designed to measure a quadrant of reciprocal space with a redundancy factor of 4.5 for Rh\textsubscript{2}(tpgu)_4 and 3.3 for Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}. The data collection strategy was designed to measure a quadrant of reciprocal space with a redundancy factor of 4.5 for Rh\textsubscript{2}(tpgu)_4 and 3.3 for Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}. The data collection strategy was designed to measure a quadrant of reciprocal space with a redundancy factor of 4.5 for Rh\textsubscript{2}(tpgu)_4 and 3.3 for Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}.

<table>
<thead>
<tr>
<th>Table 1. Crystallographic Data for Rh\textsubscript{2}(tpgu)4 and Rh\textsubscript{2}(µ-Cl-form)\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh\textsubscript{2}(tpgu)_4</td>
</tr>
<tr>
<td>chemical formula</td>
</tr>
<tr>
<td>fw (g mol−1)</td>
</tr>
<tr>
<td>space group</td>
</tr>
<tr>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
</tr>
<tr>
<td>c (Å)</td>
</tr>
<tr>
<td>θ (deg)</td>
</tr>
<tr>
<td>vol (Å3)</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>D\textsubscript{calc} (g cm−3)</td>
</tr>
<tr>
<td>μ (mm−1)</td>
</tr>
<tr>
<td>R (F,F)</td>
</tr>
<tr>
<td>R\textsubscript{w} (F,F2) (all data)</td>
</tr>
</tbody>
</table>

* Collected at 200(2) K with a wavelength of 0.71073 Å. Complex + CH\textsubscript{2}Cl\textsubscript{2}Cl, \(I > 2\sigma(I), R = \sum||f| - |F||/\sum|F|, d) R\textsubscript{w} = \sum w(F,F2 - F2)/\sum w(F,F2)^{1/2}, \) where \(w = 1/[\sum(F,F2 + (x,y^2) + y^2), P = (F,F2 + 2F,F2)^{1/2}, x = 0.0034 \) and \(y = 0.2457 \) for Rh\textsubscript{2}(tpgu)_4 + CH\textsubscript{2}Cl\textsubscript{2}, and \(x = 0.0491 \) and \(y = 0.2457 \) for Rh\textsubscript{2}(µ-Cl-form)_\textsubscript{4}.

\(^{51} \) Lutterman et al.

\(^{51} \) TExSAN: Crystal Structure Analysis Package, version 1.7–2; Molecular Structure Corporation: The Woodlands, TX, 1995.

\(^{53} \) Shellock, G. M. SHELXL-93; Universität Göttingen: Göttingen, Germany, 1993.

and $R_w(F^2) = 0.094$. For the subset of data with $I > 2\sigma(I)$, the $R(F)$ value was 0.037 for 5775 reflections. The final difference electron density map contained maximum and minimum peak heights of 0.84 and -0.95 e/Å3, respectively. Neutral atom scattering factors were used and included terms for anomalous dispersion.\(^{54}\)

For Rh$_2$(p-MeO-form)$_2$Cl, the space group was determined to be $P4_{n}nc$ by the teXsan package.\(^{53}\) This is a uniquely determined space group in the Laue group $4mm$. The structure was solved by Patterson method in SHELXS-97,\(^{55}\) where the Rh atoms were located. With $Z = 4$, the Rh dimer contains a 4-fold axis of rotation. The remaining non-hydrogen atoms were located by standard Fourier methods. Full-matrix least-squares refinements based on F^2 were performed in SHELXL-97.\(^{55}\) There is a disordered region of solvent on the 4-fold axis for which it was not possible to obtain a reasonable model. Instead, the SQUEEZE\(^{56}\) program of PLATON\(^{57}\) was used to modify the observed structure factors by subtracting the contributions from the electron density in the disordered area. In this case, this disordered region occupied a total of 781 Å3 per unit cell and amounts to 95 electrons/unit cell. The methyl group hydrogen atoms were added at calculated positions using a riding model with $U(H) = 1.5U_{eq}$(bonds C atom). For each methyl group, the torsion angle which defines its orientation about the O–C bond was refined. The remaining hydrogen atoms were included in the model at calculated positions using a riding model with $U(H) = 1.2U_{eq}$(attached atom). The final refinement cycle was based on all 3476 intensities and 183 variables and resulted in agreement factors of $R(F) = 0.071$ and $R_w(F^2) = 0.114$. For the subset of data with $I > 2\sigma(I)$, the $R(F)$ value was 0.040 for 2282 reflections. The final difference electron density map contained maximum and minimum peak heights of 0.83 and -0.73 e/Å3, respectively. Neutral atom scattering factors were used and included terms for anomalous dispersion.\(^{54}\)

The molecular and electronic structure determinations on the model complex Rh$_2$(HNC(H)NH$_2$)$_2$ were performed with density functional theory (DFT) using the Gaussian 98 program.\(^{59}\) The B3LYP\(^{59-61}\) functional along with the 6-31G* basis set for H, C, and N,\(^{63}\) and the SDD energy-consistent pseudopotentials for Rh were used.\(^{55}\) All geometries were fully optimized using the criteria of the respective programs. Orbital analyses were completed with GaussView.\(^{64}\) Electronic transitions were calculated using the TDDFT methods implemented within Gaussian 98.

Results and Discussion

Synthesis and Characterization of Rh$_2$(tpgu)$_4$. Rh$_2$(tpgu)$_4$ was prepared from Rh$_2$(O$_2$CCH$_3$)$_4$ and 1,2,3-triphenylguanidine following a procedure analogous to that previously reported for the related dirhodium formamidinates.\(^{47}\) The characterization of the product was achieved through 1H NMR in solution, mass spectrometry, and crystallography. The crystal structure of Rh$_2$(tpgu)$_4$ is shown in Figure 2. The Rh–Rh and Rh–N bond lengths are comparable to those of other dirhodium compounds with similar paddle wheel structures, including dirhodium formamidinates, which are listed in Table 2.\(^{47,65-68}\)

The position and integration of the peaks in the 1H NMR (400 MHz) spectrum of Rh$_2$(tpgu)$_4$ in THF-d$_8$ (Figure 3) were used to assign the resonances to the aromatic protons of the three phenyl rings and the NH of each ligand (numbering scheme from Figure 1). Rh$_2$(tpgu)$_4$ possesses phenyl rings similar to those of the dirhodium tetraformamidinate complexes, which aided in their assignment.\(^{47}\) One key difference between the 1H NMR spectrum of Rh$_2$(tpgu)$_4$ and other dirhodium(II) tetraformamidinate complexes is the presence of a resonance at 6.20 ppm assigned to the NH proton of the tpgu ligand. In Rh$_2$(tpgu)$_4$, the central –NH(H)$_2$ group of the guanidine ligand is significantly bulkier than the hydrogen atom found in the same position in the forma-

The $E_{1/2}(\text{Rh}^{5+/4+})$ values for the formamidinate complexes measured here are similar to those previously reported for each complex and are listed in Table 3.47 Interestingly, the oxidation potential of Rh$_2$(tpgu)$_4$, $E_{1/2}(\text{Rh}^{5+/4+}) = -0.012$ V vs NHE, lies between those of Rh$_2$(p-MeO-form)$_4$ and Rh$_2$-(m-MeO-form)$_4$. Because the guanidinate ligands are more electron rich than the formamidinate ligands, they make the dirhodium core easier to oxidize, thus resulting in oxidation potentials similar to those of the dirhodium complexes with formamidinate ligands and electron-donating substituents.

Comparison of the absorption maxima and oxidation potential of Rh$_2$(tpgu)$_4$ to those of the dirhodium(II,II) formamidinates show that the electronic structure of the coordinated guanidinate ligand is similar to that of the formamidinates. Other dirhodium paddle wheel compounds have also been reported with similar absorption spectra and oxidation potentials.68

Steady-State Photochemistry with Alkyl Halides. Marked changes in the electronic absorption spectra of Rh$_2$(R-form)$_4$ ($R = p$-CF$_3$, p-Cl, p-OCH$_3$, m-OCH$_3$) and Rh$_2$(tpgu)$_4$ were observed upon photoysis with visible light in the presence of various alkyl chlorides and alkyl bromides as solvents. Typical photoysis experiments as a function of irradiation time ($\lambda_{irr} \geq 435$ nm) are shown in Figure 4 for Rh$_2$(tpgu)$_4$ in CCl$_4$ and CH$_2$BrCH$_2$Br. No spectral changes were evident in the dark at room temperature under conditions similar to those employed in the photochemical reactions or when the complexes were irradiated in nonhalogenated solvents, such as toluene.

Figure 4a shows the growth of absorption peaks at 450, 540, ~650 (shoulder), and 1090 nm as the photolysis of Rh$_2$(tpgu)$_4$ progresses in CCl$_4$ ($\lambda_{irr} \geq 435$ nm) with the concomitant decrease in intensity of the absorption of the starting material at 878 nm. The spectral changes shown in Figure 4a result in five isosbestic points at 410, 460, 470, 825, and 900 nm. The observed spectral changes of each complex in all chlorinated solvents are similar in peak position and intensity, and the maxima for the products obtained from the photoysis of each complex in CCl$_4$ are listed Table 3, along with the photochemical quantum yields, Φ, for the complexes in CCl$_4$. From the similarity in the spectral changes that result from the reaction of each complex with all chlorinated substrates, it may be concluded that the same type of metal-containing products that absorb in the 400–1100 nm range are formed in these reactions.

The photolysis of Rh$_2$(tpgu)$_4$ in CH$_2$BrCH$_2$Br ($\lambda_{irr} \geq 435$ nm) is shown in Figure 4b as a function of irradiation time. New absorption peaks appeared at 440, 560, 790, and 1090 nm as the photolysis progressed. The concomitant decrease in intensity of the absorption at 878 nm corresponding to the initial Rh$_2$(tpgu)$_4$ complex resulted in three isosbestic points at 390, 840, and 900 nm (Figure 4b). Similarly, when Rh$_2$(p-MeO-form)$_4$ and Rh$_2$(p-CF$_3$-form)$_4$ were irradiated in different brominated solvents, new absorption peaks appear in the visible and near-IR region. As is the case with the chlorinated halides, the photolysis of each complex with alkyl bromides results in similar spectral features corresponding to the same type of product.

Table 2. Selected Bond Lengths of Rh$_2$(tpgu)$_4$ and Rh$_2$(p-MeO-form)$_4$Cl and Related Dirhodium Compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rh–Rh</td>
</tr>
<tr>
<td>Rh$_2$(tpgu)$_4$</td>
<td>2.4077(4)</td>
</tr>
<tr>
<td>Rh$_2$(dpf)$_4$</td>
<td>2.459(3)</td>
</tr>
<tr>
<td>Rh$_2$(dpba)$_4$</td>
<td>2.389(15)</td>
</tr>
<tr>
<td>Rh$_2$(4,0)-MeO-form)$_4$</td>
<td>2.452(1)</td>
</tr>
<tr>
<td>Rh$_2$(3,5-CI$_2$-form)$_4$</td>
<td>2.458(1)</td>
</tr>
<tr>
<td>(4,0)Rh$_2$(ap)$_4$</td>
<td>2.412(1)</td>
</tr>
<tr>
<td>(4,0)Rh$_2$(2-F-ap)$_4$Cl</td>
<td>2.417(9)</td>
</tr>
<tr>
<td>(3,1)Rh$_2$(2,6-F$_2$-ap)$_4$Cl</td>
<td>2.417(4)</td>
</tr>
<tr>
<td>(3,1)Rh$_2$(2,6-F$_2$-ap)$_4$Cl</td>
<td>2.4153(6)</td>
</tr>
</tbody>
</table>

* Ref 65; dpf = N,N'-diphenylformamidinate. ** Ref 66; dpba = N,N'-diphenylbenzamidinate. * Ref 47; two molecules per asymmetric unit each with a different Rh–Rh and Rh–N distances. \# Ref 66; ap = 2-anilino-pyridine; (4,0) and (3,1) refers to the isomeric arrangement of the unsymmetrical ap ligand about the dirhodium core. * Anilino N. / Pyridyl N. \# Ref 73.
It should be pointed out that irradiation with \(\lambda_{\text{irr}} = 715 \) nm resulted in identical photochemistry as that produced with higher-energy photons. For \(\text{Rh}_2(\text{tpgu})_4 \), the reaction was 7 times slower with \(\lambda_{\text{irr}} = 715 \) nm than that it was under similar experimental conditions with \(\lambda_{\text{irr}} = 495 \) nm. When the area under the absorption curve was integrated in the 435–1100 nm and 715–1100 nm spectral regions, the area of the former was approximately 6.2 times greater than the latter. This result is consistent with a smaller number of photons being absorbed with lower-energy irradiation, resulting in a slower conversion to product.

The presence of several isosbestic points in the reaction of each dirhodium complex in the alkyl halide solutions is indicative of the formation of a single metal-containing product upon irradiation, without subsequent dark reaction or further photochemistry of the products. The power dependence of the reaction is consistent with a one-photon process where plots of \(\log(I) \) vs \(\log(\text{rate}) \) resulted in slopes of \(\approx 1 \). Bubbling with argon for 30 min prior to photolysis and maintaining a positive argon pressure during the reaction do not affect the rate of conversion, indicating that oxygen is not involved in the mechanism. The dependence of the rates of the reactions on the concentration of dirhodium(II–II) complex and alkyl halide indicate that the reactions are first order in each reactant.

Identification of the Product. The absorption maxima of the product obtained in the photochemical reaction of each complex in \(\text{CCl}_4 \) (\(\lambda_{\text{irr}} = 435 \) nm); \(\psi \) values estimated from known concentration of reactant and following oxidation with \(\text{AgBF}_4 \). \(\nu \) was obtained from known concentration of reactant and following oxidation with \(\text{AgBF}_4 \). \(\Phi \) was obtained from known concentration of reactant and following oxidation with \(\text{AgBF}_4 \). The presence of some thermal reactivity precludes the accurate measurement of the photochemical quantum yield.

Table 3. Absorption (\(\lambda_{\text{abs}} \)) Maxima of Neutral \(\text{Rh}_2(L)_4 \) and One-Electron Oxidized Products from the Photolysis in \(\text{CCl}_4 \), \([\text{Rh}_2(L)_4]\text{Cl}\), Ground State Oxidation Potentials, and Photochemical Quantum Yields with \(\text{CCl}_4 \)

<table>
<thead>
<tr>
<th>(L)</th>
<th>(\lambda_{\text{abs}}/\text{nm} \times 10^3 \text{ M}^{-1} \text{ cm}^{-1})</th>
<th>([\text{Rh}_2(L)_4]\text{Cl}^+ \text{ at } 435 \text{ nm})</th>
<th>(E_{1/2}/\text{V})</th>
<th>(\Phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p-\text{MeO-form})</td>
<td>469(4.07), 586(0.80), 870(1.74) (^\alpha)</td>
<td>553(3.83), 996(4.34)</td>
<td>−0.094</td>
<td>(\psi)</td>
</tr>
<tr>
<td>(m-\text{MeO-form})</td>
<td>473(3.75), 566(0.48), 867(1.52) (^\alpha)</td>
<td>562(2.36), 923(3.80)</td>
<td>−0.009</td>
<td>0.58</td>
</tr>
<tr>
<td>(p-\text{Cl-form})</td>
<td>473(3.80), 576(0.77), 868(1.65) (^\alpha)</td>
<td>563(3.58), 949(4.84)</td>
<td>+0.194</td>
<td>0.32</td>
</tr>
<tr>
<td>(p-\text{CF}_3-\text{form})</td>
<td>474(2.83), 564(0.66), 862(1.48) (^\alpha)</td>
<td>575(2.13), 945(2.72)</td>
<td>+0.424</td>
<td>0.044</td>
</tr>
<tr>
<td>(\text{tpgu})</td>
<td>458(3.82), 600(0.35), 879(2.99)</td>
<td>542(3.88), 109(3.35)</td>
<td>−0.012</td>
<td>0.18</td>
</tr>
</tbody>
</table>

\(\alpha \) Ref 47. \(\beta \) Generated from the photolysis of each complex in \(\text{CCl}_4 \) (\(\lambda_{\text{irr}} = 435 \) nm); \(\psi \) values estimated from known concentration of reactant and following oxidation with \(\text{AgBF}_4 \). \(\nu \) was obtained from known concentration of reactant and following oxidation with \(\text{AgBF}_4 \). \(\psi \) was obtained from known concentration of reactant and following oxidation with \(\text{AgBF}_4 \). The presence of some thermal reactivity precludes the accurate measurement of the photochemical quantum yield.

Figure 3. \(^1\text{H} \) NMR of \(\text{Rh}_2(\text{tpgu})_4 \) at (a) 25 °C with corresponding integrations, (b) 40 °C, (c) 50 °C, and (d) 60 °C in THF-\(d_8 \).
the 700–1100 nm region, however, a shift occurs in the peak from 535 nm in the chemically oxidized product to 570 nm in the photochemical reaction. As will be discussed in more detail below, this shift is likely to be the result of the coordination of a chloride ion in the axial position of the latter, whereas no axial coordination is expected in the former. Furthermore, the EPR spectrum recorded in dioxane at 77 K of the product resulting from the photochemistry of \(\text{Rh}_2(\text{p-CF}_3-\text{form})_4 \) in \(\text{CCl}_4 \) is consistent with that of the chemically generated \([\text{Rh}_2(\text{p-CF}_3-\text{form})_4]^+\) cation collected under similar conditions (Supporting Information), and they parallel those reported for other \(\text{Rh}_2^{5+} \) bimetallic cores.72

Additional evidence for a new electronic transition arising from coordination of the halide ion following the photochemical reaction is shown in Figure 5b, where the absorption spectra of photochemically generated \([\text{Rh}_2(\text{m-OCH}_3-\text{form})_4]\text{Br} \) (\(\lambda_{\text{irr}} 435 \text{ nm, 5 min} \)) with \(\text{CBr}_4 \) (30 mM) in acetone (dashed line) and with \(\text{AgBF}_4 \) in acetone (solid line) in the presence of (\(\text{t-Bu} \))\text{NBr}. In both spectra (Figure 5b), the peak at \(~670\) nm arises from the coordination of the bromide ion to the axial position of the oxidized dirhodium core. This peak is not observed if the chemical oxidation is conducted in the absence of a bromide source in acetone. The identity of this peak will be discussed below.

The oxidative addition of alkyl halides to metal complexes has been shown to result in the formation of axially coordinated metal halide complexes,72–74 alkyl metal complexes,75–78 or alkyl halide metal complexes.72 The latter two can be ruled out in this case because the axial position of these complexes is too sterically crowded by the formamidinate ligands to support coordination of the alkyl group. Axially coordinated structures of \([\text{Rh}_2(\text{form})_4]^+\) solved to date show the presence of only linear ligands, such as CO and CN\(^{-}\).65,66 This observation is markedly different from the axial coordination of sterically demanding ligands to other dirhodium paddle wheel complexes with more accessible axial sites.79,80 Therefore, it is unlikely that the photochemical reactions of the dirhodium formamidinates and \(\text{Rh}_2(\text{tpgu})_4 \) with alkyl halides result in the axial coordination of the alkyl fragments to the dirhodium core.

The MALDI-TOF mass spectrum of \(\text{Rh}_2(\text{tpgu})_4 \) photolyzed in \(\text{CHBr}_3 \) exhibits a parent ion peak consistent with the \(\text{Rh}_2(\text{tpgu})_4\text{Br} \) species at \(m/2 = 1430.5 \). The formation of the mixed-valent dirhodium cation with the axially coordinated halide is evident in the X-ray crystal structure of \([\text{Rh}_2(\text{p-MeO}-\text{form})_4]\text{Cl} \) (Figure 6). The \([\text{Rh}_2(\text{p-MeO}-\text{form})_4]\text{Cl} \) crystals were

Figure 4. Changes to the electronic absorption spectra of \(\text{Rh}_2(\text{tpgu})_4 \) upon irradiation (\(\lambda_{\text{irr}} = 435 \text{ nm} \)) in (a) \(\text{CCl}_4 \) (0–120 min) and (b) \(\text{CH}_3\text{CHBr}_2 \) (0–1380 min).

Figure 5. Electronic absorption spectra of (a) \(\text{Rh}_2(\text{p-CF}_3-\text{form})_4 \) oxidized photochemically (\(\lambda_{\text{irr}} = 435 \text{ nm, 5 min} \)) in neat \(\text{CCl}_4 \) (dashed line) and with \(\text{AgBF}_4 \) in acetone (solid line) and (b) \(\text{Rh}_2(\text{m-OCH}_3-\text{form})_4 \) oxidized photochemically (\(\lambda_{\text{irr}} \geq 435 \text{ nm, 5 min} \)) with \(\text{CBr}_4 \) (30 mM) in acetone (dashed line) and with \(\text{AgBF}_4 \) in acetone (solid line) in the presence of (\(\text{t-Bu} \))\text{NBr}.

Photoinduced One-Electron Reduction of Alkyl Halides

Figure 6. ORTEP representation of Rh₂(p-MeO-form)₄Cl with thermal ellipsoids drawn at the 50% probability level. Only the core atoms of the complex and the ipso carbons of the phenyl rings are shown for clarity.

collected from the reaction of Rh₂(p-MeO-form)₄ in CHCl₃ exposed to room light for 24 h, followed by slow solvent evaporation. They exhibit Rh–Rh, Rh–N, and Rh–Cl bond lengths of 2.4670(7), 2.046(2), and 2.400(2) Å, respectively (Table 2). These distances are similar to those of other Rh₂₅⁺ complexes with nitrogen equatorial bridging ligands and an axial chloride, some of which are listed in Table 2.⁸¹

The products that result from the photolysis of Rh₂(tpgu)₄ in brominated solvents possess an absorption band at ~800 nm. This peak is blue-shifted in the photolysis experiments conducted with the corresponding bimetallic complex in solution. The products observed in brominated solvents consist of Rh₂₂⁺, a species that remains stable in CCl₄, and alkyl radicals.⁸⁶,⁸⁷ Similar results were observed for the Rh₂(R-form)₄ complexes.

Reaction Mechanism. Halogen atom abstraction from alkyl halides by the Rh₂⁺⁺ complexes upon irradiation to form the corresponding Rh₂⁺⁺X⁻ (X = Cl, Br) may involve the formation of alkyl radicals as shown in eq 1.

\[
\text{Rh₂(L)₄} + \text{RX} \xrightarrow{hv} \text{Rh₂(L)₄}⁻X + \text{R}⁺
\]

In solution, the reaction of two alkyl radicals would result in the production of the corresponding R₂ dimerization product in the absence of other species with which R⁺ can react efficiently. Indeed, the photochemistry of Rh₂(p-C₃F₇-form)₄ (λₘₐₓ ≧ 435 nm) with benzyl bromide followed by ¹H NMR in acetone-d₆ results in the disappearance of the signal at 4.64 ppm assigned to the methylene protons of the starting material, BrCH₂(C₆H₄)₂, and the concomitant appearance of the corresponding signal for dibenzyl at 3.30 ppm. These results point at the formation of R⁺ as described by eq 1 and are typical of the photochemical generation of alkyl radicals.⁸⁴

The reaction in eq 1 can proceed via outer-sphere or inner-sphere mechanisms, given by eq 2 and 3, respectively.⁸⁵

\[
\begin{align*}
*\text{Rh₂(L)₄} + \text{RX} & \xrightarrow{ET} [\text{Rh₂(L)₄}]⁺ + \text{RX}⁻ \xrightarrow{fast} \text{Rh₂(L)₄X} + \text{R}⁺ \\
*\text{Rh₂(L)₄}⁻X & \xrightarrow{+} \text{Rh₂(L)₄}X + \text{R}⁺
\end{align*}
\]

In the outer-shell case (eq 2), the initial excited state electron transfer from *Rh₂(L)₄ generates RX⁻, a species that is well-known to undergo fast dissociation to produce halide and alkyl radicals.⁸⁶,⁸⁷ Therefore, the rate of the outer-sphere reaction is expected to depend on the reduction potential of RX.⁸⁸ Alternatively, the rate of an inner-sphere reaction should be sensitive to the carbon-halogen bond dissociation energy of the alkyl halide, steric effects of the alkyl group, and the nature of the halogen.⁸⁹–⁹¹

Semilog plots of the relative rate of product formation versus the carbon-halogen bond dissociation energy, E(C–X),⁸⁵,⁹² and versus the irreversible reduction potential of the alkyl halides, Eₚ⁺, are shown in Figure 7 for the photolysis of Rh₂(tpgu)₄. It is evident from the two plots in Figure 7 that a better correlation of the relative rates of these reactions is obtained with Eₚ than with E(C–X), indicative of an outer-sphere pathway (eq 2). The same trend was observed for the photochemistry of Rh₂(p-C₃F₇-form)₄ and Rh₂(p-MeO-form)₄ with various alkyl chlorides and alkyl bromides. The lack of photoreactivity of Rh₂(tpgu)₄ toward CH₃I and C₂H₅I provides further evidence of an outer-sphere mechanism (eq 2). The C–I bond dissociation energies of CH₃I and C₂H₅I are 236 and 259 kJ/mol, respectively, corresponding to weaker bonds than those of C₂H₅Br₂, CH₂Br₂, and CCl₂, all of which react with the dirhodium complexes upon irradiation with visible light (Figure 7b). However, both CH₃I and C₂H₅I are harder to reduce than the alkyl halides that react with Rh₂(R-form)₄ (R = p-C₃F₇, p-Cl, p-OCH₃, o-MOCH₃) and Rh₂(tpgu)₄ (Figure 7a) with Eₚ = −1.41 V and −1.45 V vs NHE.⁸⁵

Although the photolysis of Rh₂(R-form)₄ (R = p-C₃F₇, p-Cl, p-OCH₃, o-MOCH₃) and Rh₂(tpgu)₄ in CCl₄ result in similar spectral changes, their reaction rates differ significantly. The relative production of the corresponding oxidized product following irradiation of each complex with λₘₐₓ ≧ 435 nm

for 20 min is shown in Figure 8, plotted as a function of the complex oxidation potential. The semilog plot of the relative reaction rate vs $E_{1/2}(\text{Rh}_{2}^{5+/4+})$ shown in Figure 8 exhibits a nearly linear relationship for the dirhodium tetraformamidinates, $\text{Rh}_{2}(\text{R-form})_{4}$ ($\text{R} = p-\text{CF}_3$, $p-\text{Cl}$, $p-\text{OCH}_3$, $m-\text{OCH}_3$), as expected for an outer-sphere mechanism. The slight deviation of $\text{Rh}_{2}(\text{tpgu})_{4}$ from the linear relationship in the plot shown in Figure 8 may be the result of the larger average radius of this complex relative to the formamidinates, which would increase the distance between the bulk alkyl halide and the redox-active Rh_{2}^{4+} core. Such an increase in distance is known to have a profound effect on bimolecular electron transfer rates through a reduction in electronic coupling, which depends exponentially on donor-acceptor separation.\(^{(93)}\)

A similar trend is observed when the reaction quantum yields of the complexes in CCl$_4$ are plotted vs $E_{1/2}(\text{Rh}_{2}^{5+/4+})$ values listed in Table 3.