Biology and Earth Science Faculty Scholarship

Document Type


Publication Date


Publication Title

Biophysical Journal


Science Direct


The molecular basis for excitation-contraction coupling in skeletal muscle is generally thought to involve conformational coupling between the L-type voltage-gated Ca2+ channel (CaV1.1) and the type 1 ryanodine receptor (RyR1). This coupling is bidirectional; in addition to the orthograde signal from CaV1.1 to RyR1 that triggers Ca2+ release from the sarcoplasmic reticulum, retrograde signaling from RyR1 to CaV1.1 results in increased amplitude and slowed activation kinetics of macroscopic L-type Ca2+ current. Orthograde coupling was previously shown to be ablated by a glycine for glutamate substitution at RyR1 position 4242. In this study, we investigated whether the RyR1-E4242G mutation affects retrograde coupling. L-type current in myotubes homozygous for RyR1-E4242G was substantially reduced in amplitude (∼80%) relative to that observed in myotubes from normal control (wild-type and/or heterozygous) myotubes. Analysis of intramembrane gating charge movements and ionic tail current amplitudes indicated that the reduction in current amplitude during step depolarizations was a consequence of both decreased CaV1.1 membrane expression (∼50%) and reduced channel Po (∼55%). In contrast, activation kinetics of the L-type current in RyR1-E4242G myotubes resembled those of normal myotubes, unlike dyspedic (RyR1 null) myotubes in which the L-type currents have markedly accelerated activation kinetics. Exogenous expression of wild-type RyR1 partially restored L-type current density. From these observations, we conclude that mutating residue E4242 affects RyR1 structures critical for retrograde communication with CaV1.1. Moreover, we propose that retrograde coupling has two distinct and separable components that are dependent on different structural elements of RyR1.

First Page


Last Page









Peer Reviewed


Included in

Biology Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.