Summer 2015

Marfan Syndrome in Athletes

Chelsey Hastings
Otterbein University, chelsey.hastings@otterbein.edu

Follow this and additional works at: http://digitalcommons.otterbein.edu/stu_msn

Part of the Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, Medical Pathology Commons, and the Nursing Commons

Recommended Citation

This Project is brought to you for free and open access by the Student Research & Creative Work at Digital Commons @ Otterbein. It has been accepted for inclusion in MSN Student Scholarship by an authorized administrator of Digital Commons @ Otterbein. For more information, please contact library@otterbein.edu.
Marfan Syndrome in Athletes
Chelsea Hastings, RN, BSN, CCRN
Otterbein University, Westerville, Ohio

Introduction
Genetic disorders are widely misunderstood in our society and can lead to early mortality. Marfan syndrome (MFS) is a genetic disorder that affects connective tissue (Harris, Croce, & Tian, 2014). Antoine Marfan, a French pediatrician, first described this disease in 1896 (Elshehri & Harris, 2014). MFS can manifest in several different organ systems. The cardiovascular complications of aortic dilation and dissection often account for the morbidity associated with this disease (Frid et al., 2014). Understanding the inheritance, pathophysiology, and treatment of MFS is important for the advanced practice nurse (APN).

Prevalence of the disease is approximately two per 10,000 individuals, but it is thought that MFS is under diagnosed and authorities suspect MFS may affect one in 3,000 (Pitcher, Emberson, Lacro, Sleeper, & Sleeper, 2015). MFS is most notable for affecting the 1986 US Olympian team (Pitcher, Emberson, Lacro, Sleeper, & Sleeper, 2015). In 1986, the APN can prevent the mortality associated with children with MFS, the APN can help the Ghent criteria can help the APN recognize the signs of Marfan in the general public and athletes in particular. The Ghent nomenclature is a scoring system where systemic features of Marfans are graded (Wright & Connolly, 2015). In athletes with Marfan-like qualities of superior height and extended extremity length, an echocardiogram should be performed. This test can give the APN a view of the heart using sound waves (Greenemeier, 2014). Gene testing can be performed, but is usually only done so in families that have a high occurrence of Marfan. Once the disease is diagnosed the APN can focus on the medical management of the disease with the patient. Physical activity should be modified in order to reduce the stress placed on the aorta (Marfan Foundation, 2015). Medications such as beta-blockers or angiotensin receptor blockers are prescribed to lower the workload of the heart or aorta. The APN needs to stress to athletes and their families that this does not reduce the risk of strenuous exercise or aorta. The APN must keep in mind the emotional toll that this may place on an athlete. Removing their ability to participate in strenuous sports such as basketball may result in depression.

References

Presentation of the Case
Lamar has played basketball his entire life. His height, long arms, and long fingers have propelled him to the top of every team and league he has ever participated in. Lamar is 6’8”, has bilateral lens dislocation, and slight scoliosis of the spine. As a child he also had a detached retina, which required repair. Lamar has to have an echocardiogram done as part of his yearly physical to play division one basketball. After the screening, he is referred to a cardiologist because the test reveals a dilated aortic root. Genetic testing reveals a mutation in the gene FBN1, found on chromosome 15. These factors as scored by the Ghent Criteria, are enough to diagnose Lamar with Marfan syndrome. The phenotype of Marfan syndrome can be very variable (Braverman, 2015).

Pathophysiology
The underlying pathophysiology of Lamar’s diagnosis revolves around the alteration of the FBN1 gene. The disease is usually transmitted in an autosomal dominant fashion. FBN1 is responsible for encoding the glycoprotein fibrillin. Fibrillin is the structural component of microfibrils. Microfibrils serve as building blocks in the human body and ligaments found in eye lenses, the aorta, and other connective tissues (Chen, 2015). Defects in fibrillin cause weakness in these tissues and hence the abnormalities observed in patients with this disease. Transforming growth factor-beta receptor (TGRFR) also plays an important role in Marfans. Fibrillin-1 binds to a form of TGFBR and keeps it sequestered throughout the body. Insufficient amounts of fibrillin cause an excess of TGFBR in the lungs, heart, valves, and aorta. It is unclear how high levels of TGFBR cause the pathology associated with the disease.

Significance of Pathophysiology
When diagnosed, Marfan patients can have a normal life expectancy with chronic lifestyle modifications in place. Undiagnosed, Marfan syndrome can unfortunately lead to an early, unexpected death. The APN has a responsibility to inform themselves on the symptoms expressed by this rare disease. Becoming a knowledgeable APN can benefit the young athletes in their community.

Conclusion
When diagnosed, Marfan patients can have a normal life expectancy with chronic lifestyle modifications in place. Undiagnosed, Marfan syndrome can unfortunately lead to an early, unexpected death. The APN has a responsibility to inform themselves on the symptoms expressed by this rare disease. Becoming a knowledgeable APN can benefit the young athletes in their community.