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The Topology of Incidence Pseudographs

T. R. James∗ R. Klette†

March 10, 2010

Abstract

Incidence pseudographs model a (reflexive and symmetric) inci-
dence relation between sets of various dimensions, contained in a count-
able family. Work by Klaus Voss in 1993 suggested that this general
discrete model allows to introduce a topology, and some authors have
done some studies into this direction in the past (also using alternative
discrete models such as, for example, abstract complexes or orders on
sets of cells). This paper provides a comprehensive overview about the
topology of incidence pseudographs. This topology has various appli-
cations, such as in modeling basic data in 2D or 3D digital picture
analysis, or in describing polyhedral complexes. This paper addresses
especially also partially open sets which occur, for example, in common
(non-binary) picture analysis.

1 Introduction

An incidence pseudograph [S, I, dim] models a (reflexive and symmetric)
incidence relation I between sets c of dimension dim(c) ≥ 0, contained in
a countable family S. (Relation I represents the symmetric completion
of the subset-of-relationship.) This very general discrete model allows to
introduce a topology, and to derive combinatorial formulas assuming some
kind of regularity for the underlying geometry of cells c ∈ S. Obviously, the
generality of this model allows for applications in a wide range of situations.

For example, digital (2D or 3D) pictures may be considered to be sub-
structures of a regular orthogonal grid in (2D or 3D) space, and S would be
a set of m-cells c (i.e., dim(c) = m with 0 ≤ m ≤ 3) in this case; a pixel is
a 2-cell, a voxel is a 3-cell, two pixels are vertex-adjacent if they are both
incident with the same 0-cell, two voxels are face-connected iff they are both
incident with the same 2-cell, and so forth.

See Figure 1 for 2-cells, 1-cells, and 0-cells of a 2D picture. The sketch
in this figure indicates a partition of the digital plane into those cells, and in
case of more than two values in a digital picture, one of those values defines
non-open and non-closed regions, which will be studied as partially open in
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1 INTRODUCTION 78

this paper. (For example, in the sketch on the right, black regions are open,
there is one closed gray region, and one partially-open white region.

Figure 1: Figure 5.21 in (7). The three-valued digital picture on the left is
shown in three alternative topological interpretations. From left to right:
black is 8-connected (forming a closed set), and gray is 4-connected (forming
an open set), then gray is closed and white is open, and, finally, gray is again
closed, but black is open.

Definition 1 An incidence structure [S, I, dim] is defined by a countable
set S of nodes, an incidence relation I on S that is reflexive and symmetric,
and a function dim defined on S into a finite set {0, 1, . . . , n} of natural
numbers.

Such a structure is called an incidence pseudograph (see Definition 2
below) if it satisfies additional constraints, such as having only finite sets
I(c) (i.e., being locally finite), or that a node c′ ∈ I(c) cannot be of the
same dimensionality as node c. Incidence pseudographs allow us to model
the topology of digital pictures, or of other discrete objects characterized by
elements of varying dimensionality.

The book (7) decided for the model of incidence pseudographs for dis-
cussing the underlying digital topology of 2D or 3D digital pictures. Equiv-
alently, also some model based on cells and their dimensionality (9), or on
cells and their order (2) could have been used; however, graphs might be
seen as an even more abstract model compared to families of cells.

Abstract complexes (9) are defined by cells of different dimensionality;
see, for example, (5; 6; 8) for applications of this approach for defining
fundamentals of binary image analysis. The equivalence between abstract
complexes and incidence pseudographs was stated on page 223 in (7): Let
[S, I, dim] be an incidence pseudograph. We define that c < c′ iff

c′ ∈ I(c), c 6= c′, and dim(c) < dim(c′)

Let c ≤ c′ iff c < c′ or c = c′. It follows that [S,≤, dim] is an abstract
complex. Note that the work in (5) (based on cells and their dimensionality)
was mainly motivated by proving the correctness of a 3D surface scanning
algorithm, which is also a central subject in (4), which defines and applies
digital spaces, which are graph-theoretical models rather than cellular spaces.
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Orders on sets of cells have been discussed in (2; 3), also for defining
fundamentals of binary image analysis. (1) discussed the equivalence of
orders on sets of cells with abstract complexes.

Incidence pseudographs have been introduced in (10) for discussing com-
binatorial properties of sets of pixels or voxels, considered to be grid points
(note: not cells!) in 2D or 3D regular orthogonal grids. [Applying the topo-
logical discussion of (7) and what follows below, finite incidence pseudo-
graphs as considered in (10) are open sets.] The discussion of combinatorial
properties (i.e., counts of nodes of various dimensions, and relations between
such counts) has been complemented in (7) by also discussing closed sets.
However, in this paper we will not discuss any of those combinatorial prop-
erties, and will focus on set-theoretical or topological properties instead. In
this sense, this paper is not a review on incidence pseudographs in general
by leaving one important subject fully out of our discussion.

This paper recalls the discussion of topological subjects of incidence pseu-
dographs as given in (7) in a brief but concise form, and extends it then into
a much more detailed analysis of topological properties of incidence pseudo-
graphs. In particular, this paper aims at presenting a topological concept for
multi-valued (i.e., not just binary) pictures, having not just open or closed
sets, but also partially open sets. Thus, this paper contains various new
topological or set-theoretical results on incidence pseudographs, and the au-
thors do not compare in every case what has been said already in (7) or
not.

The paper is structured as follows: Section 2 introduces into incidence
pseudographs. Sections 3 and 6 introduce the auxiliary notions of the rooted
set and a descendence path, respectively. Section 4 introduces components
and regions; subjects of major interest in this study. Section 5 then finally
defines the topology by introducing open and closed sets. Section 7 shows
that there is a unique topological closure for any finite set which has a
connected nonempty core. Open, closed and complete sets are studied in
Section 8. Section 9 shows that there is also a smallest open set containing
a given set. Section 10 discusses a more technical concept (of 0-rooted sets),
which is then applied in Section 11 for studying partially open sets and
so-called 0-components and 0-regions. Section 12 concludes this paper.

2 Incidence Pseudographs

Let G = [S, I, dim] be an incidence structure. If n is the maximum of
the range of dim, then we call G an n-incidence structure and say that
ind(G) = n. A node c ∈ S is called an i-cell if dim(c) = i and if i = n we
also say c is a principal node otherwise we say c is a marginal node of G.
The set of all principal nodes of G is called the core of G, written core(G),
or core(M) for M ⊆ G.

For M ⊆ S, the complement of M is defined as M = S\M . Two
nodes p, q ∈ S are connected wrt M ⊆ S iff there exists a finite sequence
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{p0, . . . , pn} where

p = p0 and q = pn ,
(∀i ∈ {0, . . . , n} pi ∈ M) ∨ (∀i ∈ {0, . . . , n} pi ∈ M), and
∀i ∈ {0, . . . , n− 1} pi ∈ I(pi+1) .

The sequence {p0, . . . , pn} is called a path from p to q. If also pi ∈ M , for
all i ∈ {0, . . . , n}, we say that p and q are connected in M .

We say that p and q are connected if they are connected in S. A set
A ⊆ M ⊆ S is connected wrt M iff all p, q ∈ A are connected wrt M . We
say that A is connected if A is connected wrt S.

For p ∈ M , the set {(p, q) : p and q are connected wrt M} ⊆ M defines
a complementary component of M .

Definition 2 An incidence structure G = [S, I,dim] is called an incidence
pseudograph iff it has the following properties:

(1) For all c ∈ S, I(c) is finite.

(2) The core of G is connected.

(3) Any finite set of principal nodes of G has at most one infinite comple-
mentary component of principal nodes.

(4) If c′ ∈ I(c), c′ 6= c, then dim(c) 6= dim(c′).

(5) Each marginal node of G is incident with at least one principal node
of G.

G is said to be monotonic provided

(6) If c′ ∈ I(c), c′′ ∈ I(c′) and dim(c) ≤ dim(c′) ≤ dim(c′′) implies c′′ ∈
I(c).

Digital pictures, and subsets in those, are typically modeled by mono-
tonic incidence pseudographs. However, those pseudographs allow us to de-
scribe discrete structures in a more general sense, and we also include non-
monotonic pseudographs into our discussion (e.g., assume that blocks are
either defined by bounded polyhedral objects, or a geometric arrangement
of a finite number of blocks; incidence is only defined between polyhedral
objects, or blocks of the same level of construction).

G = [S, I, dim] always denotes an incidence pseudograph in this paper; if
there is no danger of confusion, a set S uniquely identifies “its” pseudograph
G, and vice-versa. – For i ∈ N and c ∈ S, we define

Ii(c) = {c′ ∈ I(c) : dim(c′) = i}
Gi(c) = {c′ ∈ I(c) : dim(c′) ≥ i}
G(c) = {c′ ∈ I(c) : dim(c′) > dim(c)}

The following was not yet defined this way in (7), and will prove to be useful.
For M ⊆ S, n = ind(G), and 0 ≤ i ≤ n, we define M+

i recursively by
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M+
n = M

M+
i−1 = M+

i ∪ {c ∈ S : dim(c) = i− 1 ∧ ∅ 6= G(c) ⊆ M+
i }

Finally, let M+ = M+
0 . We say M+ is the completion of M .

Definition 3 M is complete iff M = M+.

It follows that, if core(M) = ∅, then M+ = M .

Lemma 1 If n = ind(G) and M ⊆ S, then

(i) For 0 ≤ i ≤ j ≤ n,M+
i ⊇ M+

j .

(ii) M+
0 =

⋃n
i=0 M+

i

(iii) If 0 ≤ i < n, then c ∈ M+
i \M+

i+1 ⇐⇒ dim(c) = i ∧ ∅ 6= G(c) ⊆
M+

i+1 ∧ c 6∈ M .

(iv) If i = dim(c) ∧ c ∈ M+\M , then c ∈ M+
i ∧ ∅ 6= G(c) ⊆ M+

i+1.

Proof: Property (i) follows immediately from the definition. Property (ii)
follows from 0 ≤ i ≤ j ≤ n, M+

i ⊇ M+
j . Property (iii) follows immediately

from the definition.
To prove Property (iv), let 0 ≤ i < n and assume i = dim(c) and

c ∈ M+
0 \M and let k be the largest integer such that c ∈ M+

k . Since
c 6∈ M = M+

n , we have k < n and c ∈ M+
k \M+

k+1 and thus k = i ∧ ∅ 6=
Gi(c) ⊆ M+

i+1. ut
Theorem 1 For M ⊆ S, M+ is the smallest subset of S satisfying:

(i) M ⊆ M+.

(ii) If ∅ 6= G(c) ⊆ M+, then c ∈ M+.

Proof: Let n = ind(G). Property (i) follows from the fact that M = M+
n ⊆

M+
0 = M+. To prove (ii), assume ∅ 6= G(c) ⊆ M+. If c ∈ M = M+

0 ,
then c ∈ M+ so assume c 6∈ M . Let i = dim(c). Thus, by Lemma 1,
∅ 6= G(c) ⊆ M+

i+1 ∧ c ∈ M+
i \M+

i+1. Hence c ∈ M+. Therefore M+ satisfies
Properties (i) and (ii).

Suppose C satisfies Properties (i) and (ii). Let c ∈ M+
i+1. If c ∈ M ,

then, by Property (i), c ∈ C. Assume c ∈ M+\M . Thus, by definition
and Lemma 1, c ∈ M+

i \Mi+1 where i = dim(c). Thus c ∈ M+
i \M where

i = dim(c). We claim this is sufficient to insure c ∈ C.
Let P(i) be the statement “If dim(c) = i∧ c ∈ M+

i \M , then c ∈ C”. Let
n = ind(G). Since M+

n = M and C satisfies Property (i), P(n) is true.
Assume P(j) is true for all j such that i ≤ j ≤ n for some i such that

0 < i ≤ n and let dim(c) = i − 1 and c ∈ M+
i−1\M . Thus ∅ 6= G(c) ⊆ M+

i .
Let c′ ∈ G(c) and k = dim(c′). Thus c′ ∈ M+ and k ≥ dim(c) + 1 = i.
If c′ ∈ M then c′ ∈ C so assume c′ 6∈ M . It follows that c′ ∈ M+

k \M .
Since i ≤ k ≤ n, by assumption, P(k) is true and hence c′ ∈ C. Thus
∅ 6= G(c) ⊆ C. Since C satisfies Property (ii), c ∈ C. Therefore M+ ⊆ C.

ut
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Corollary 1 M is complete iff ∅ 6= G(c) ⊆ M implies c ∈ M.

Proof: If M is complete then M = M+ and, by Theorem 1, ∅ 6= G(c) ⊆ M
implies c ∈ M. If ∅ 6= G(c) ⊆ M implies c ∈ M, then M = M+ and hence is
complete. ut

3 Rooted Sets

A node c ∈ M is said to be rooted in M iff c is incident to a principal
node of M , otherwise c is said to be unrooted in M . Rooted(c) is the set of
rooted nodes in M , and Rooted(M) the union of all Rooted(c), for c ∈ M .
Unrooted(c) is the set of unrooted nodes in M .

Definition 4 If M = Rooted(M), M is said to be rooted.

From this we have the following:

Rooted(M) = {c ∈ M : core(M) ∩ I(c) 6= ∅}
Unrooted(M) = M\Rooted(M) = {c ∈ M : core(M) ∩ I(c) = ∅}

If M 6= ∅ and M is rooted, then core(M) 6= ∅. – The following two lemmas
will be of repeated use later in this paper:

Lemma 2 Rooted(M) is rooted, and it is also complete if M is complete.

Proof:Let R = Rooted(M). Note that core(R) = core(M). Suppose c ∈ R.
Thus c ∈ M and core(M) ∩ I(c) 6= ∅ and so core(R) ∩ I(c) 6= ∅. Therefore
R is rooted.

To show that R is complete, suppose there exists a c ∈ R+\R. Since
R ⊆ M,R+ ⊆ M+. Since M is complete we have R+ ⊆ M+ = M and
hence c ∈ M\R. Thus core(M)∩ I(c) = ∅. Let i = dim(c). Since c ∈ R+\R
we have G(c) ⊆ R+

i+1. Since G is an incidence pseudograph, there exists a
p ∈ core(S) ∩ I(c). Since M is complete and c ∈ M we have p ∈ M . Hence
core(M) ∩ I(c) 6= ∅ which implies c ∈ R but c 6∈ R. Therefore R+ = R and
hence R is complete. ut

Lemma 3 If c ∈ M+\M and p ∈ core(S) ∩ I(c), then p ∈ M .

Proof: Let c ∈ M+\M and p ∈ core(S) ∩ I(c). Let i = dim(c). Thus c ∈
M+

i \M+
i+1 and ∅ 6= G(c) ⊆ Mi+1. We have p ∈ I(c) and dim(p) > dim(c) = i

so p ∈ G(c) and therefore p ∈ Mi+1 ⊆ M+. Thus p ∈ core(M+) = core(M).
Therefore p ∈ M . ut

This lemma allows the following

Corollary 2 (i) If c ∈ M+\M , then core(M) ∩ I(c) 6= ∅
(ii) If M is rooted, then M+ is rooted.
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Proof: Property (i): Let c ∈ M+\M . Since G is an incidence pseudograph,
∃p ∈ core(S) ∩ I(c). By Lemma 3 this implies p ∈ M and since p is a
principal node, that p ∈ core(M). Hence core(M) ∩ I(c) 6= ∅.

Property (ii): Assume M is rooted and let c ∈ M+. If c ∈ M , then
core(M)∩I(c) 6= ∅. Otherwise, by Lemma 3, core(M)∩I(c) 6= ∅. Therefore
M+ is rooted. ut

4 Components and Regions

If M is complete and C ⊆ M , then C is called a component of M iff

(1) The principal nodes of C form a non-empty maximal connected (wrt
M) subset of the principal nodes of M .

(2) If p is a principal node of C, c ∈ M, and c ∈ I(p), then c ∈ C.

(3) C is complete wrt G.

Definition 5 M ⊆ S is said to be a component iff M is a component of M .
A region (of M) is a finite component (of M).

If M is complete, rooted, and core(M) connected and if C is a component
of M , then C = M . – By using Lemma 3, we can show the following

Corollary 3 If C is a component of M , then Rooted(C) is a rooted com-
ponent of M .

Proof: Let R = Rooted(C). Note R ⊆ C ⊆ M . The set core(R) = core(C)
is a nonempty maximal connected subset of core(M) since C is a component
of M .

If c ∈ M, core(R) ∩ I(c) 6= ∅, then core(C) ∩ I(c) 6= ∅ and c ∈ M .
Therefore c ∈ C since C is a component of M . Thus c ∈ R since c ∈ C and
core(C) ∩ I(c) 6= ∅.

To show R is complete, assume that there exists a c ∈ R+\R. Since
R+ ⊆ C+ = C, c ∈ C, and c 6∈ R we have core(C) ∩ I(c) = ∅. Since G is
an incidence pseudograph, there exists a p ∈ core(S) ∩ I(c). By Lemma 3,
p ∈ C. Therefore p ∈ core(R) = core(C) and p ∈ I(c) which contradicts
core(C) ∩ I(c) = ∅, since c 6∈ C. Therefore R is complete.

Let c ∈ R which implies c ∈ C and core(C) ∩ I(c) 6= ∅. Therefore
core(R) ∩ I(c) 6= ∅ and so R is rooted. ut

By using Lemma 3, we also show the following lemma, which will be
used in the proof of the following theorem.

Lemma 4 If M is complete and p ∈ core(M), then M has a unique rooted
component C containing p. Furthermore C = core(C) ∪ {c ∈ M : I(c) ∩
core(C) 6= ∅}.
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Proof: Let p ∈ core(M) for M complete. Let A = {c ∈ core(M) : c and
p are connected wrt M}. A is a nonempty maximal connected subset of
core(M).

Let C = A ∪ {c ∈ M : A ∩ I(c) 6= ∅}. C ⊆ M . Note that core(C) = A.
Thus core(C) is a non-empty maximal connected subset of M .

To show C is complete suppose there exists a c ∈ C+\C. Since c 6∈ C,
we have A ∩ I(c) = ∅. There exists a principal node q ∈ I(c). By Lemma
3, q ∈ C which implies core(M) ∩ I(c) 6= ∅. This implies that c ∈ C which
contradicts the assumption that c 6∈ C. Therefore C = C+ and hence C is
complete.

Let q ∈ core(C), c ∈ M, and c ∈ I(q). Thus c ∈ M and A ∩ I(c) 6= ∅
which implies c ∈ C. Therefore C is a component of M containing p.

To show C is rooted let c be a marginal node of C. By the definition of
C we have core(C) ∩ I(c) 6= ∅ and hence C is rooted.

To show C is unique, assume R is a rooted component of M containing
p. Since core(R) and core(C) are both maximal connected subsets of the
core(M) each containing p, we must have core(C) = core(R) = A. Let
c ∈ C and hence c ∈ M . If c ∈ A then c ∈ R so assume c 6∈ A which implies
A ∩ I(c) 6= ∅ and hence core(R) ∩ I(c) 6= ∅ which, since R is a component
of M implies c ∈ R. So C ⊆ R. Let c ∈ R which implies c ∈ M . Since R
is rooted there exists a principal node p ∈ I(c). Thus A ∩ I(c) 6= ∅ which
implies c ∈ C. Therefore C = R. ut

Theorem 2 (i) If M is complete and rooted, then the rooted components of
M form a partition of M .
(ii) If M is complete and not rooted, then the set consisting of Unrooted(M)
along with the rooted components of M is a partition of M .

Proof: Property (i): Following the previous lemma, for each p ∈ core(M)
let Cp be the unique rooted component of M containing p. Recall that
Cp = core(Cp)∪{c ∈ M : core(Cp)∩I(c) 6= ∅}. Let A = {Cp : p ∈ core(M)}.
Let p, q ∈ core(M) and assume Cp ∩ Cq 6= ∅. Let c ∈ Cp ∩ Cq. Since Cp

and Cq are rooted, there exists a p′ ∈ core(Cp) ∩ I(c) and there exists a
q′ ∈ core(Cq) ∩ I(c). We have p, p′, c, q′, q is a sequence of nodes in M each
connected to the next and thus p and q are connected wrt M and thus p ∈ Cq

which implies Cp = Cq since the rooted components of M containing p are
unique. Thus A consists of disjoint subsets of M .

Let c ∈ M . Since M is rooted there exists a p ∈ core(M) ∩ I(c) and so
c ∈ Cp which implies c ∈ ⋃

A. Since
⋃
A ⊆ M we conclude that M =

⋃
A.

Property (ii): At first we show that, if C is a component of Rooted(M),
then C is a rooted component of M . – Let R = Rooted(M) and let C be
a component of R. Note that core(R) = core(M) and thus core(C) is a
maximal connected subset of core(M).

Assume p ∈ core(C), c ∈ M , and c ∈ I(p). Since core(C) ⊆ core(R),
p ∈ core(R), c ∈ M and c ∈ I(p) which implies that c is rooted in M and
hence c ∈ R. Since C is a component of R we have c ∈ C, and since C,
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being a component of R is complete, we have C is a component of M . Since
C ⊆ Rooted(M), we have core(M) ∩ I(c) 6= ∅, for all c ∈ C. Therefore C is
a rooted component of M .

Now let K = M\Unrooted(M) = M ∩ Rooted(M) = Rooted(M). By
Lemma 2, K is complete and rooted. Thus, by Property (i), K is partitioned
by the rooted components of K. Let P be the collection of the rooted
components of K along with the set Unrooted(M). As shown above, we
also have that the components of K are rooted components of M . Clearly
M =

⋃
P. We have the rooted components of M are disjoint and disjoint

from Unrooted(M). Therefore P partitions M . ut

5 Definition of Topology; Closed and Open Sets

Definition 6 M ⊆ S is said to be closed iff, for all c ∈ M and for all
c′ ∈ I(c) with dim(c′) < dim(c), it follows that c′ ∈ M . M is said to be open
iff M = S\M is closed.

As usual, the family of all open sets defines a topology, here on the given
incidence pseudograph. A set M is closed iff M is open. A node c of a set
M is called an inner node of M iff I(c) ⊆ M , otherwise it is called a border
node of M .

Definition 7 M∇ is the set of inner nodes of M . δM is the set of border
nodes of M and is called the border of M .

Theorem 3 If M is closed, then both M and M∇ are complete.

Proof: Set M : Suppose M is closed. We claim M+
i ⊆ M for 0 ≤ i ≤ n

where n = ind(G). Recall M+
n = M so the claim is true for i = n.

Assume M+
i ⊆ M for some 0 < i ≤ n and let c ∈ M+

i−1. Thus c ∈ M+
i

(and hence c ∈ M) or that dim(c) = i−1 < n and ∅ 6= G(c) ⊆ M+
i . Assume

c′ ∈ G(c) ⊆ M+
i . Thus c′ ∈ I(c) and dim(c′) > dim(c). By assumption

M+
i ⊆ M . Hence c′ ∈ M . Since M is closed, this implies c ∈ M . Therefore

M+
i ⊆ M for all i satisfying 0 < i ≤ n. This implies M+ = M and therefore

M is complete.
Set M∇: Assume M is closed. We claim (M∇)+i ⊆ M∇ for 0 ≤ i ≤ n.
Assume (M∇)+i ⊆ M for some 0 < i ≤ n and let c ∈ (M∇)+i−1. Thus

c ∈ (M∇)+i (and hence c ∈ M∇) or that dim(c) = i− 1 < n and ∅ 6= G(c) ⊆
(M∇)+i . Assume c′ ∈ G(c) ⊆ (M∇)+i . Thus c′ ∈ I(c), dim(c′) > dim(c),
and c′ ∈ (M∇)i which, by assumption, implies c′ ∈ M∇. Since c ∈ I(c′) this
implies that c ∈ M .

To show c ∈ (M∇) let b ∈ I(c). If dim(b) > dim(c), then, since G(c) ⊆
M∇, we have b ∈ M∇ and hence b ∈ M . If dim(b) = dim(c), then b = c
which implies b ∈ M . If dim(b) < dim(c), then b ∈ M since M is closed.
This implies (M∇)+ = M∇ and therefore M∇ is complete. ut

We also note that M is both open and closed iff its border is the empty
set (i.e., δM = ∅ iff M = M∇).
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The examples in Figures 2 to 5 illustrate various situations which may
occur.

Figure 2: Left: A finite, closed (and hence complete), non-empty M which
has a non-rooted component. Right: An M which is closed (and hence
complete) with M 6= core(M)+.

Figure 3: Left: An M which is closed (and hence complete) and M∇ not
open. Right: An M which is closed, not open, and M∇ not closed.

Figure 4: Left: An M which is complete, open, not closed, and M∇ is not
complete. Right: An M which is complete and δM is not complete, not
closed, and not open.

Lemma 5 M is open iff, for all c ∈ M and c′ ∈ I(c) with dim(c′) > dim(c),
it follows that c′ ∈ M .

Proof: Assume M is open, c ∈ M , c′ ∈ I(c) and dim(c′) > dim(c). If c′ ∈ M
which is closed since M is open, we would have c ∈ M . Therefore c′ ∈ M .
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Figure 5: An M which is open but not complete.

Assume that for all c ∈ M and c′ ∈ I(c) with dim(c′) > dim(c) it follows
that c′ ∈ M , and suppose c ∈ M , c′ ∈ I(c) and dim(c′) < dim(c). If c′ ∈ M
this would imply that c ∈ M . Thus c′ ∈ M . Therefore M is closed and
hence M is open. ut

6 Descendence Paths

This section prepares for important considerations in the following section
by providing and discussing the notion of a descendence path.

A sequence of nodes {p0, . . . , pk} is called a descendence path (from p0 to
pk) iff, for all i ∈ {0, . . . , k − 1}, dim(pi+1) > dim(pi) and pi+1 ∈ I(pi). For
example, in a 3D regular grid, we may start with a grid vertex p0, continue
with a grid edge p1 which is incident with this vertex, then with a grid face
p2 incident with this edge, and finally a grid cube p3 incident with this face.

A descendence path {p0, . . . , pk} is called a descendence path wrt M
(from p0 to pk) iff for 0 ≤ i < k, pi 6∈ M and pk ∈ S. Note that for any node
c, {c} is a descendence path (wrt any M) from c to c.

For M ⊆ S, i ∈ N define

C(M, i) = {c ∈ S : ∃ descendence path {p0, . . . , pi} with c = p0 ∧ pi ∈
M}
M• = ∪∞i=0C(M, i)

Note that M = C(M, 0), so M ⊆ M•. Also note that for n = ind(G), M• =
∪n

i=0C(M, i) since C(M, i) = ∅ for i > n. We say c′ is a descendent of c iff
there exists a descendence path from c = p0 to c′ = pk. Let D(c) = {c′ :
c′ is a descendent of c} and DM (c) = {c′ : ∃ descendence path wrt M from
c to c′ }.

If c′ ∈ I(c) ∧ dim(c′) > dim(c), then D(c′) ⊆ D(c). We also have that
D(c) = {c} ∪⋃{D(c′) : c′ ∈ I(c) ∧ dim(c′) > dim(c)}.

For 0 ≤ i ≤ ind(G), we define Di(c) = {c′ ∈ D(c) : dim(c) = i} and
DM

i (c) = {c′ ∈ DM (c) : dim(c) = i}.
If A = M ∪ {c ∈ S\M : Dn(c) ⊆ M}, n = ind(G), and if {p0, . . . , pk} is

a descendence path for which there exists a pi ∈ A\M , then pj ∈ A, for all
j, with i ≤ j ≤ k. If c 6∈ core(S) ∧DM (c) ⊆ M , then c ∈ M+.

Note that, if pi 6∈ M for all i satisfying 0 ≤ i ≤ k, then pk ∈ DM (c).
Thus it follows that if a node c, which is in the completion of a set M , had
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a descendent b which is not in the completion of M , then every descendence
path from c to b must contain at least one member of M . We restate this
fact in the following:

Corollary 4 If c ∈ M+ and {p0, . . . , pk} is a descendence path with c = p0

and pk 6∈ M+, then there exists i, 0 ≤ i ≤ k, with pi ∈ M .

7 Topological Closure

In this section we show that any set M ⊆ S does have a unique “topological
closure”.

Lemma 6 If D is closed and M ⊆ D, then

(i) for all i ∈ N, C(M, i) ⊆ D

(ii) M• ⊆ D

Proof: Property (ii) follows from Property (i) since M• =
⋃∞

i=0C(M, i).
Let n = ind(G). Note that C(M, i) = ∅, for all i > n. We prove Property

(i) by induction. Since C(M, 0) = M we have C(M, 0) ⊆ D.
Assume C(M, i) ⊆ D and let c ∈ C(M, i + 1) for some 0 ≤ i < n. By

definition there exists a descendence path {p0, . . . , pi+1} with c = p0 and
pi+1 ∈ M . For 0 ≤ j ≤ i let sj = pj+1. We have si = pi+1 ∈ M so
s0 ∈ C(M, i). By the assumption we have s0 ∈ D. Hence p1 ∈ D and
p0 ∈ I(p1). Since D is closed, c = p0 ∈ D. ut

Corollary 5 If D is closed, M ⊆ D, and if {p0, . . . , pk} is a descendence
path with pk ∈ M , then p0 ∈ D.

Theorem 4 M• is the smallest closed set containing M .

Proof: M = C(M, 0) ⊆ M•. To show M• is closed, let c ∈ M• and c′ ∈
I(c) such that dim(c′) < dim(c). Then there exists a descendence path
{p0, . . . , pk} such that c = p0 and pk ∈ M . Define s0 = c′ and for 1 ≤ j ≤
k + 1, define sj = pj−1. Thus {s0, . . . , sk+1} is a descendence path with
c′ = s0 ∧ sk+1 ∈ M . Hence c′ ∈ M• and therefore M• is closed.

Suppose M ⊆ D and D is closed. By Lemma 6, M• ⊆ D. ut
This theorem now allows us to formulate the following important

Definition 8 Let M ⊆ S; we denote the unique (topological) closure of M
by M•.

Corollary 6 M• = (M+)•

Proof: M+ ⊆ M• and M• is closed. It follows from Theorem 4 that (M+)• ⊆
M•. Since M ⊆ M+, it follows that M• ⊆ (M+)•. Therefore M• = (M+)•.

ut
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Corollary 7 If M is finite, then M• is finite.

Proof: Assume M is finite. Thus C(M, 0) = M is finite. Let n = ind(G)
and assume C(M, i) is finite for 0 ≤ i < n. We show that

C(M, i + 1) = {c ∈ S : ∃c′ ∈ C(M, i) ∩ I(c) ∧ dim(c) < dim(c′)}

Let A = {c ∈ S : ∃c′ ∈ C(M, i) ∩ I(c) with dim(c) < dim(c′)} and let
c ∈ C(M, i+1). By definition, there exists a descendence path {p0, . . . , pi+1}
with c = p0 and pi+1 ∈ M .

Let c′ = p1. From the definition of a descendence path we have c = p0 ∈
I(c′) and dim(c) < dim(c′). For 0 ≤ j ≤ i let sj = pj+1. Then, {s0, . . . , si}
is a descendence path with c′ = s0 and si = pi+1 ∈ M . Hence c′ ∈ C(M, i)
and thus c ∈ A.

Let c ∈ A. Then there exists a c′ ∈ C(M, i) such that c′ ∈ I(c) and
dim(c) < dim(c′). There exists a descendence path {p0, . . . , pi} such that
c′ = p0 and pi ∈ M . Let s0 = c and for 1 ≤ j ≤ i + 1, let sj = pj−1. We
note that {s0, . . . , si+1} is a descendence path from C to pi ∈ M and hence
c ∈ C(M, i + 1). Therefore C(M, i + 1) = A.

Note that if c ∈ C(M, i + 1), then there exists a c′ ∈ C(M, i) such that
c ∈ I(c′). And thus c ∈ ⋃{I(c′) : c′ ∈ C(M, i)}. Therefore

C(M, i + 1) ⊆
⋃
{I(c′) : c′ ∈ C(M, i)}

which is a finite union of finite sets and therefore finite. Thus M• =
∪n

i=0C(M, i) is also finite. ut

Corollary 8 If M is finite, then M+ is finite.

Proof: M+ ⊆ M• for the previous corollary. ut

Lemma 7 If G is monotonic and M ⊆ S, then M• = M ∪ C(M, 1).

Proof: Let A = M ∪ C(M, 1) = C(M, 0) ∪ C(M, 1). Let n = ind(G). We
will show C(M, i) ⊆ C(M, 1) for all i, 1 ≤ i ≤ n, by induction. Clearly it is
true for i = 1.

Assume C(M, i) ⊆ C(M, 1) and let c ∈ C(M, i + 1). Thus there exists
a descendence path {p0, . . . , pk} such that c = p0 and pi+1 ∈ M . For
0 ≤ j ≤ i define sj = pj+1. So p1 = s0 ∈ C(M, i). By assumption,
p1 = c0 ∈ C(M, 1). Thus there exists a descendence path {t0, t1} such
that p1 = t0 and t1 ∈ M . We have c = p0 ∈ I(p1), dim(c) < dim(p1),
t0 = p0 ∈ I(t1), and dim(p1) < dim(t1). Since G is monotonic this implies
c ∈ I(t1). Thus, for r0 = c, r1 = t1, {r0, r1} is a descendence path with
c = r0 and r1 ∈ M . Therefore c ∈ C(M, 1). ut

Corollary 9 If G = [S, I, dim] is monotonic and if M is a rooted subset of
S, then M• is rooted.



8 OPEN AND CLOSED REGIONS; COMPLETE SETS 90

Proof: Let c be a marginal node of M•. If c ∈ M , then core(M) ∩ I(c) 6= ∅
since M is rooted. So assume c 6∈ M . Since G is monotonic we have from
Lemma 7 that c ∈ C(M, 1). So there exists a descendence path {p0, p1} such
that c = p0 and p1 ∈ M . If p1 ∈ core(M) = core(M•), then p1 ∈ core(M•)∩
I(c). Assume p1 6∈ core(M). Thus p1 is marginal in M . Since M is rooted
there exists a p ∈ core(M) ∩ I(p1). We have c ∈ I(p1), dim(c) < dim(p1) ,
p1 ∈ I(p) and dim(p1) < dim(p). Since G is monotonic this implies c ∈ I(p).
Thus p ∈ core(M) = core(M•). Therefore M• is rooted. ut

We also state the following three set-theoretical relations:
(i) core(M+) = core(M),
(ii) core(M•) = core(M),
(iii) M+ ⊆ M•.
Also note that, if M is finite, core(M) is non-empty and connected wrt

M , then M• is a closed region. If M ⊆ S, ∅ 6= core(M) is connected wrt M ,
then M• is a closed component containing M .

Figure 6: A rooted, complete, finite M\∅ 6= core(M) which is connected wrt
M , but M• = {a, c, e} is not a rooted component of M .

Figure 6 shows that there exists a rooted, complete, finite, nonempty set
M 6= core(M) which is connected wrt M , but M• is not a rooted component
of M .

8 Open and Closed Regions; Complete Sets

If M ⊆ S is finite then M is a closed region iff

(i) ∅ 6= core(M) is a non-empty, maximal connected subset of core(M).

(ii) For all c ∈ M , c′ ∈ I(c) and dim(c′) < dim(c) it follows that c′ ∈ M .

Corollary 10 Let M be a finite subset of S where G = [S, I, dim] is an
n-incidence pseudograph. Then

(i) M is an open region of G iff

(i.1) core(M) is non-empty and connected,

(i.2) core(M) ∩ I(c) 6= ∅ ⇒ c ∈ M , and
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(i.3) if dim(c) < n, then c ∈ M ⇔ G(c) ⊆ M .

(ii) If G is monotonic then M is an open region of G iff

(ii.1) core(M) is non-empty and connected,

(ii.2) core(M) ∩ I(c) 6= ∅ ⇒ c ∈ M , and

(ii.3) if dim(c) < n, then c ∈ M ⇔ core(S) ∩ I(c) ⊆ M .

Proof: Assume M is an open region of G. Properties (i.1) and (i.2) follow
directly from the fact that M is a component. To prove Property (i.3),
first assume dim(c) < n and c ∈ M and b ∈ G(c). Thus b ∈ I(c) and
dim(c) < dim(b). Since M is open by Lemma 5, b ∈ M . Thus G(c) ⊆ M .

Next assume dim(c) < n and G(c) ⊆ M . There exists a p ∈ core(S) ∩
I(c). Thus c ∈ I(p) and dim(c) < dim(p) which implies p ∈ G(c) ⊆ M .
Hence p ∈ M . Since M is closed this implies c ∈ M . Therefore Property
(i.3) is satisfied by M .

Assume M is a subset satisfying Properties (i.1), (i.2), and (i.3). To show
M is open assume c ∈ M , c′ ∈ I(c), and dim(c′) > dim(c). By Property
(i.3), c′ ∈ M . Thus, by Lemma 5, M is open.

To show that M is complete suppose c ∈ M+\M . Thus, by Lemma 1,
G(c) ⊆ Mi+1 where i = dim(c). It follows, by Property (i.3), that c ∈ M .
This contradiction establishes M+ = M and hence M is complete. Thus we
have that M is an open region. Therefore we have shown (i).

To prove (ii) assume G is monotonic.
Assume G is open. Then, by (i), G satisfies (ii.1), (ii.2), and (i.3).

Suppose dim(c) < n. Assume c ∈ M and p ∈ core(S)∩ I(c). Thus p ∈ G(c).
By (i.3), p ∈ M. Thus core(S) ∩ I(c) ⊆ M. Assume core(S) ∩ I(c) ⊆ M
and let b ∈ G(c). Thus b ∈ I(c) and dim(c) < dim(b). There exists p ∈
core(S) ∩ I(b). We have c ∈ I(b), b ∈ I(p), and dim(c) < dim(b) ≤ dim(p).
Since G is monotonic, we have c ∈ I(p). Hence p ∈ core(S)∩ I(c) which, by
assumptions, implies p ∈ M. Thus p ∈ core(M) ∩ I(b) and thus, by (i.2),
b ∈ M. Hence G(c) ⊆ M and thus, by (i.3), c ∈ M. Therefore M satisfies
(ii.1), (ii.2), and (ii.3).

Assume G satisfies (ii.1), (ii.2), and (ii.3). Thus G satisfies (i.1) and
(i.2). Suppose dim(c) < n. Assume c ∈ M and b ∈ G(c). There exists p ∈
core(S) ∩ I(b). We have c ∈ I(b), b ∈ I(p), and dim(c) < dim(b) ≤ dim(p).
Since G is monotonic c ∈ I(p). Hence p ∈ core(S) ∩ I(c). It follows by
(iii.3), p ∈ M. Since p ∈ core(M)∩ I(b), we have by (ii.2), b ∈ M. Therefore
G(c) ⊆ M.

Assume G(c) ⊆ M. Since core(S) ∩ I(c) ⊆ G(c), it follows from (ii.3),
that c ∈ M. Therefore G satisfies (i.1), (i.2), and (i.3) and thus is open. ut

Figure 7 shows that there exists an M which is finite, core(M) 6= ∅,
connected, open, complete, and satisfies dim(c) < ind(G) ⇒ [c ∈ M ⇔
D(c) ⊆ M ] but is not a component as it fails to satisfy core(M) ∩ I(c) 6=
∅ ⇒ c ∈ M .
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Figure 7: A finite set M which is not a component.

c ∈ S is said to be invalid wrt M iff c 6∈ M ∧ M ∩ I(c) 6= ∅. The
following definition provides an alternative to the definition of a border as
given above:

Definition 9 The set of all nodes invalid wrt M is called the boundary of
M , denoted by bd(M).

Theorem 5 (i) If M is closed, then bd(M) = ∅.
(ii) If bd(M) = ∅, then M is complete.

Proof: Property (i): Assume M is closed and c ∈ bd(M). Thus c 6∈ M and
there exists a p ∈ core(M) ∩ I(c). Hence p ∈ I(c), p ∈ M , and dim(c) <
dim(p). Since M is closed this implies c ∈ M but c 6∈ M . Therefore
bd(M) = ∅.

Property (ii): Suppose M is not complete. Thus there exists a c ∈
M+\M . Since there exists a principal node p ∈ I(c), we have by Proposition
3, p ∈ core(M)∩ I(c). Since c 6∈ M this implies c ∈ bd(M). But bd(M) = ∅.
Therefore M is complete. ut

Obviously, this shows that any closed set is also complete. – The fol-
lowing are some technical specifications, needed in the following auxiliary
considerations.

A node c is an upward rooted point of a set M iff c ∈ M and there exists
a descendence path {p0, . . . , pk} with

c = p0 ∧ pk ∈ core(M) ∧ ∀i ( 0 ≤ i ≤ k ⇒ pi ∈ M)

The set of all upward rooted points of M is denoted by URP (M). A node
c is a downward exit point of M iff c 6∈ M and there exists a c′ ∈ M ∩ I(c)
with dim(c) < dim(c′). The set of all downward exit points of M is denoted
by DXP (M). A node c is an upward exit point of M iff c 6∈ M and there
exists a c′ ∈ M ∩ I(c) with dim(c) > dim(c′). The set of all upward exit
points of M is denoted by UXP (M).

For these sets we have that M is closed iff DXP (M) = ∅, M is open
iff UXP (M) = ∅, M is complete iff DXP (M) ⊆ URP (M), and M is open
and complete iff UXP (M) = ∅ and DXP (M) ⊆ URP (M).
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9 Partially Open Sets

For i ∈ N and c ∈ S, we define Li(c) = {c′ ∈ I(c) : dim(c′) ≤ i} and
L(c) = {c′ ∈ I(c) : dim(c′) < dim(c)}. It follows that I(c) = L(c) ∪ G(c),
and, if dim(c) = i, then L(c) = Li−1(c).

Let M ⊆ S and n = ind(G). For 0 ≤ i ≤ n we define a set M−

recursively by

M−
0 = M

M−
i+1 = M−

i ∪ {c ∈ S : dim(c) = i + 1 ∧ ∅ 6= L(c) ⊆ M−
i }

We define M− =
⋃n

i=0 M−
i .

Definition 10 M is partially open iff M = M−.

Note that if M is open, then M is partially open. Partially open sets
occur in non-binary digital images (e.g., gray-level or color images); see
Figure 1 for a three-valued image.

Lemma 8 If n = ind(G) and M ⊆ S, then

(i) M−
i ⊆ Mj, for 0 ≤ i ≤ j ≤ n

(ii) M−
n =

⋃n
i=0 M−

i

(iii) if 0 < i ≤ n then c ∈ M−
i \M−

i−1 ⇔ dim(c) = i∧∅ 6= L(c) ⊆ M−
i−1∧c 6∈

M

(iv) if dim(c) = i ∧ c ∈ M−\M then i > 0 ∧ c ∈ M−
i ∧ ∅ 6= L(c) ⊆ M−

i−1

Proof: Properties (i), (ii), and (iii) follow immediately from the definitions.
To prove Property (iv) let c ∈ M−\M . Let k be the smallest natural number
such that c ∈ M−

k . Since c 6∈ M = M−
0 , k > 0 and c ∈ M−

k \M−
k−1. Thus

i = k > 0 and ∅ 6= L(c) ⊆ M−
i−1. ut

Theorem 6 For M ⊆ S, M− is the smallest subset of S satisfying:

(i) M ⊆ M−

(ii) if ∅ 6= L(c) ⊆ M− then c ∈ M−.

Proof:1 Property (i) follows from M = M0 ⊆ M−. To prove Property (ii),
assume ∅ 6= L(c) ⊆ M−. If c ∈ M , then c ∈ M− so assume c 6∈ M . Thus, by
Lemma 8, ∅ 6= L(c) ⊆ M−

i−1 and c ∈ M−
i \M−

i−1. Hence c ∈ M−. Therefore
M satisfies Properties (i) and (ii).

Suppose A satisfies Properties (i) and (ii). Let c ∈ M−. If c ∈ M , then
c ∈ A since A satisfies Property (i). Assume c 6∈ M . Thus, by Lemma 8,

1There is an obvious analogy of this proof to the one of Theorem 1.
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c ∈ M−
i \M−

i−1 and ∅ 6= L(c) ⊆ M−
i−1 where i = dim(c). Hence c ∈ M−\M .

We claim that this is sufficient to show c ∈ A.
Let P(i) be the statement “If c ∈ M−

i \M ∧ dim(c) = i, then c ∈ A”.
Since M−

0 = M , P(0) is true (vacuously.)
Let n = ind(G) and assume P(j) is true for all 0 ≤ j ≤ i for some

i, 0 ≤ i < n. Let c ∈ M−
i+1\M such that dim(c) = i + 1. It follows from

Lemma 8 that ∅ 6= L(c) ⊆ M−
i . Let c′ ∈ L(c) and k = dim(c′). Thus

c′ ∈ M−
i and k ≤ dim(c) − 1 = i. If c′ ∈ M then c′ ∈ A so assume c′ 6∈ M .

It follows that c′ ∈ M−
k \M . Since 0 ≤ k ≤ i, and the assumption P(k) is

true, we have that c′ ∈ A. Thus ∅ 6= L(c) ⊆ A. Since A satisfies Property
(ii), c ∈ A. Hence P(i) is true for all 0 ≤ i ≤ n. Therefore M− ⊆ A. ut

For M ⊆ S, and i ∈ N we define

O(M, i) = {c ∈ S : ∃ descendence path {p0, . . . , pi} with c = p0 ∧ p0 ∈ M}

O(M) =
∞⋃

i=0

O(M, i)

Lemma 9 If A is open and M ⊆ A, then

(i) O(M, i) ⊆ A, for all i ∈ N
(ii) O(M) ⊆ A

Proof: Property (ii) follows from Property (i) since O(M) =
⋃∞

i=0O(M, i).
Let n = ind(G). Note that O(M, i) = ∅, ∀i > n. We will prove Property
(i) by induction. Since O(M, 0) = M and M ⊂ A, we have O(M, 0) ⊆ A.

Assume O(M, i) ⊆ A and let c ∈ O(M, i + 1) for some i such that
0 ≤ i < n. By definition there exists a descendence path {p0, . . . , pi+1} with
c = pi+1 and p0 ∈ M . Note {p0, . . . , pi} is a descendence path with p0 ∈ M
and thus pi ∈ O(M, i). By assumption this implies pi ∈ A. We have pi ∈ A,
pi ∈ I(c), and dim(pi) < dim(c). Since A is open this implies c ∈ A. ut

Corollary 11 If A is open, M ⊆ A, and if {p0, . . . , pk} is a descendence
path with p0 ∈ M , then pk ∈ A.

Theorem 7 If M is finite, then O(M) is finite.

Proof: Assume M is finite. Thus O(M, 0) = M is finite. Let n = ind(G)
and assume O(M, i) is finite for some i such that 0 ≤ i < n. We show that

O(M, i + 1) = {c ∈ S : ∃c′ ∈ O(M, i) with c′ ∈ I(c) ∧ dim(c′) < dim(c)}

Let A = {c ∈ S : ∃c′ ∈ O(M, i) with c′ ∈ I(c)∧dim(c′) < dim(c)} and let c ∈
O(M, i+1). By definition there exists a descendence path {p0, . . . , pi+1} such
that p0 ∈ M and c = pi+1. Let c′ = pi. Note {p0, . . . , pi} is a descendence
path with p0 ∈ M ∧ c′ = pi. Thus c′ ∈ O(M, i), c′ ∈ I(c), and dim(c′) <
dim(c). Thus c ∈ A. Therefore O(M) ⊆ A.
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Now let c ∈ A. Thus there exists a c′ ∈ O(M, i) with c′ ∈ I(c) and
dim(c′) < dim(c). Let {p0, . . . , pi} be a descendence path with p0 ∈ M∧c′ =
pi. Let si+1 = c and let sj = pj for 0 ≤ j ≤ i. Note that {s0, . . . , si+1} is
a descendence path with s0 ∈ M and c = si+1. Hence c ∈ O(M, i + 1) and
therefore O(M, i + 1) = A.

Note if c ∈ O(M, i + 1), then there exists a c′ ∈ O(M, i) such that
c ∈ I(c′). Thus O(M, i + 1) ⊆ ⋃{I(c′) : c′ ∈ O(M, i)}, which is a finite
union of finite sets. ut

It follows that M− is finite if M is finite. If G is monotonic, then
O(M) = M ∪O(M, 1).

Theorem 8 O(M) is the smallest open set containing M .

Proof: M = O(M, 0) ⊆ O(M). To show O(M) is open, let c ∈ O(M)
and c′ ∈ I(c) such that dim(c′) > dim(c). Thus there exists a descendence
path {p0, . . . , pk} such that p0 ∈ M and c = pk. Define pk+1 = c′ then
{p0, . . . , pk+1} is a descendence path with p0 ∈ M and c′ = pk+1. Thus
c′ ∈ O(M). Therefore O(M) is open.

Suppose M ⊆ A for some open set A. By Lemma 9, O(M) ⊆ A. ut
The last theorem defines a dual to the topological closure of a set M ,

which is normally not available in other topologies.

10 0-Rooted Sets

Finally we reverse the roles of principal and 0-dimensional nodes. For ex-
ample, in picture analysis it might be of interest to focus on grid vertices
(corners of grid cubes, end points of grid edges, and so forth) rather than
on pixels or voxels, identified by principal nodes. This will also support
studies of “partially open” sets (i.e., sets which are typically not studied in
topological papers related to binary picture processing).

For M ⊆ S we define leaves(M) = {c ∈ M : dim(c) = 0}. A node c ∈ M
is said to be 0-rooted in M iff I(c) ∩ leaves(M) 6= ∅. The set of all 0-rooted
nodes in M is denoted by 0-Rooted(M).

Let 0-Unrooted(M) = M \ 0-Rooted(M). If M = 0-Rooted(M), then
we say M is 0-rooted.

Definition 11 If S is 0-rooted, then we also say that G is 0-rooted.

Corollary 12 leaves(M−) = leaves(M)

Proof: Let c ∈ leaves(M−). Thus dim(c) = 0 ∧ c ∈ M−. Suppose c 6∈ M .
Then, by Lemma 8, dim(c) > 0. Thus c ∈ M which implies c ∈ leaves(M).
Therefore leaves(M−) ⊆ leaves(M).

Let c ∈ leaves(M). Thus c ∈ M ∧ dim(c) = 0 which implies c ∈ M− ∧
dim(c) = 0. Thus c ∈ leaves(M−). Therefore leaves(M−) = leaves(M).

ut
We also have that leaves(O(M)) = leaves(M) and M− ⊆ O(M).
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Lemma 10 If c ∈ M−\M and b ∈ leaves(S) ∩ I(c), then b ∈ M .

Proof: Let c ∈ M−\M and b ∈ leaves(S) ∩ I(c). Let i = dim(c). Thus, by
Lemma 8, i > 0 ∧ c ∈ M−

i \M and ∅ 6= L(c) ⊆ M−
i−1. We have b ∈ I(c) and

dim(b) < dim(c). Thus b ∈ L(c) and hence b ∈ M−
i−1. This implies b ∈ M−.

Since dim(b) = 0, b ∈ leaves(M−) = leaves(M). Therefore b ∈ M . ut
If G is 0-rooted and c ∈ M−\M , then leaves(M) ∩ I(c) 6= ∅. If M is 0-

rooted, then M− is 0-rooted. If M 6= ∅ and M is 0-rooted, then leaves(M) 6=
∅.

Theorem 9 If G is 0-rooted and M is partially open, then 0-Rooted(M) is
partially open and 0-rooted.

Proof: Let A = 0-Rooted(M). Note that leaves(A) = leaves(M). Suppose
c ∈ A. Thus c ∈ M and leaves(M) ∩ I(c) 6= ∅ and so leaves(A) ∩ I(c) 6= ∅.
Therefore A is 0-rooted.

To show that A is partially open, suppose there exists a c ∈ A−\A.
Since A ⊆ M , we have A− ⊆ M−. Since M is partially open this implies
A− ⊆ M and hence c ∈ M\A which implies leaves(M) ∩ I(c) = ∅. Let
i = dim(c). Since G is 0-rooted, there exists a b ∈ leaves(S)∩I(c) and since
c ∈ A−\A, we have, by Proposition 10, b ∈ A and hence leaves(A)∩I(c) 6= ∅.
But, since leaves(A) = leaves(B), this implies leaves(M) ∩ I(c) 6= ∅. This
contradiction establishes that A is partially open. ut

11 0-Components and 0-Regions

C ⊆ M is a 0-component of M iff

(1) leaves(C) form a non-empty maximal connected (wrt M) subset of
leaves(M),

(2) if b ∈ leaves(C) ∧ c ∈ M ∧ c ∈ I(b), then c ∈ C, and

(3) C is partially open.

A finite 0-component of M is called a 0-region of M .

Definition 12 If M is a 0-component of M , then we call M a 0-region.

Let M be partially open, 0-rooted, and leaves(M) is connected. If C is
a 0-component of M , then C = M .

Lemma 11 If G is 0-rooted and C is a 0-component of M , then 0-Rooted(C)
is a 0-rooted component of M .

Proof: Let R =0-Rooted(C). Note that leaves(R) = leaves(C) is a non-
empty maximal connected subset of leaves(M) since C is a 0-component of
M . Clearly R is 0-rooted.
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Let c ∈ M such that leaves(R)∩ I(c) 6= ∅. Thus c ∈ M and leaves(C)∩
I(c) 6= ∅. Since C is a 0-component this implies c ∈ C. Since leaves(C) ∩
I(c) 6= ∅ we have c ∈ R.

To show R is 0-complete assume there exists a c ∈ R−\R. Since G is
0-rooted there exists a b ∈ leaves(S)∩ I(c). Thus, by Proposition 10, b ∈ R
and thus leaves(R) ∩ I(c) 6= ∅. Since leaves(R) = leaves(C), leaves(C) ∩
I(c) 6= ∅. Since R ⊆ C, R− ⊆ C− = C, c ∈ C, and c 6∈ R, we have
leaves(C) ∩ I(c) 6= ∅. This contradiction establishes that R is 0-complete.
Therefore R is a 0-rooted 0-component of M . ut

Lemma 12 If G is 0-rooted, M is partially open, and b ∈ leaves(M), then
M has a unique 0-rooted 0-component C containing b. Furthermore C =
leaves(C) ∪ {c ∈ M : leaves(C) ∩ I(c) 6= ∅}

Proof: Let b ∈ leaves(M) for M partially open. Let A = {c ∈ leaves(M) : c
and b are connected wrtM}. Note A is a non-empty maximal connected
subset of leaves(M). Let C = A∪{c ∈ M : A∩I(c) 6= ∅}. Note C ⊆ M and
leaves(C) = A. Thus leaves(C) is a non-empty maximal connected subset
of leaves(M).

To show C is 0-complete suppose there exists a c ∈ C−\C which implies
A ∩ I(c) = ∅. Since G is 0-rooted there exists a p ∈ leaves(S) ∩ I(c) which,
by Theorem 10, implies p ∈ leaves(C)∩ I(c). This contradiction establishes
that C is 0-complete.

Let p ∈ leaves(C) and c ∈ M such that and c ∈ I(p). Thus c ∈ M
and A ∩ I(c) 6= ∅ which implies c ∈ C. Therefore C is a 0-component of
M . Clearly C is 0-rooted. Therefore C is a 0-rooted 0-component of M
containing b.

To show that C is unique, assume R is a 0-rooted 0-component of M
containing B. Since both C and R are 0-rooted and contain b, there exists
a c ∈ leaves(C) and an r ∈ leaves(R) such that c ∈ I(b) and r ∈ I(c). Thus
leaves(R) and leaves(C) are connected in M by b and since leaves(R) and
leaves(C) are both maximal connected subsets of leaves(M), we must have
leaves(R) = leaves(C) = A.

Let c ∈ C and hence c ∈ M . If c ∈ A, then c ∈ R so assume c 6∈ A
which implies A ∩ I(c) 6= ∅ and hence leaves(R) ∩ I(c) 6= ∅. Since R is a
0-component of M this implies c ∈ R. Thus C ⊆ R.

Let c ∈ R which implies c ∈ M . Since R is 0-rooted there exists a
p ∈ leaves(R) ∩ I(c). Thus c ∈ M and A ∩ I(c) 6= ∅ which implies c ∈ C.
Therefore C = R. ut

Lemma 13 If G is 0-rooted and M is partially open and 0-rooted, then the
0-rooted 0-components of M partition M

Proof: For each b ∈ leaves(M), let Cb be the unique 0-rooted 0-component
of M containing b. Recall Cb = leaves(Cb) ∪ {c ∈ M : leaves(Cp) ∩ I(c) 6=
∅}. Let P = {Cb : b ∈ leaves(M)}. Suppose a, b ∈ leaves(M) such that
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Ca ∩Cb 6= ∅. Let c ∈ Ca ∩Cb. Since Ca and Cb are 0-rooted there exists an
a′ ∈ leaves(Ca) ∩ I(c) and there exists a vertex b′ ∈ leaves(Cb) ∩ I(c). We
have that [a, a′, c, b′, b] is a sequence of nodes in M each connected to the
next and thus a and b are connected wrt M and hence a ∈ Cb which implies
Ca = Cb.

Let c ∈ M . Since M is 0-rooted, there exists b ∈ leaves(M)∩I(c). Thus
c ∈ Cb which implies c ∈ ⋃

P. Since
⋃
P ⊆ M we have M =

⋃
P. Therefore

P partitions M . ut
Lemma 14 If C is a 0-component of 0-Rooted(M), then C is a 0-rooted
0-component of M .

Proof: Let K = 0-Rooted(M) and let C be a 0-component of K. Note
that leaves(K) = leaves(M) and thus leaves(C) is a non-empty maximal
connected subset of leaves(M).

Assume p ∈ leaves(K), c ∈ K, and c ∈ I(p). Thus leaves(M)∩ I(c) 6= ∅
and hence c ∈ K. Since C is a 0-component of K we have c ∈ C. Since C is
partially open, C is a 0-component of M . Since C ⊆ 0-Rooted(M), we have
leaves(M)∩ I(c) 6= ∅, for all c ∈ C. Therefore C is a 0-rooted 0-component
of M . ut
Corollary 13 If G is 0-rooted and M is partially open and not 0-rooted,
then the set consisting of 0−Unrooted(M) along with the 0-rooted 0-compo-
nents of M forms a partition of M .

Proof: Let K = M \ 0-Unrooted(M) = Rooted(M). By Lemma 11, K is 0-
complete and 0-rooted. Let P be the collection of the 0-rooted 0-components
of K along with Unrooted(M). By Lemma 14, the 0-rooted 0-components
of K are 0-rooted 0-components of M . By Lemma 13, K is the union of the
0-rooted 0-components of K (and hence of M). Since M = 0-Unrooted(M)∪
K, we have M =

⋃
P. Since the 0-rooted 0-components of M are disjoint

and distinct from each other and from 0-Unrooted(M), P partitions M . ut
We demonstrate the existence of some particular kinds of sets by means

of examples. There exists a finite M which is complete with M not partially
open. For this, see M = {a, b} = M+ and M 6= M

− = {a, b, c, d} on the
left in Figure 8. There also exists a finite M which is partially open with M
not complete; see right of Figure 8: M = {b, c} = M−, and M = {a, d, e} 6=
M
− = {a, b, c, d, e}.
There exists a finite M which is open (and hence partially open) with

M 6= leaves(M)−. See M = {a, b, d} = M− and leaves(M)− = {d} 6= M in
Figure 9, left.

If M is open, then M∇ is partially open. There exists a closed, partially
open M for which M∇ is not partially open. Figure 9 shows such a set on
the right, with M = {a, b, c}, M∇ = {c} and L(a) = M∇ but a 6∈ M∇.
Therefore M∇ is not partially open.

If M 6= ∅ and M∇ = ∅ (i.e., δM = M), then M is not open or M is not
closed. There exists an M which is partially open and closed (and therefore
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Figure 8: Left: a finite set M which is complete, and M is not partially
open. Right: a finite M which is partially open with M not complete.

Figure 9: Left: a finite set M which is open, with M 6= leaves(M)−. Right:
a finite set M which is closed, partially open, and for which M∇ is not
partially open.

Figure 10: Left: set M which is partially open and closed with M∇ = ∅ .
Middle: set M which is complete and open with M∇ = ∅. Right: set M
which is partially open and complete, core(M) 6= ∅, leaves(M) 6= ∅, rooted
and 0-rooted, with M∇ = ∅.

complete) with M∇ = ∅. See Figure 10, left. There exists an M which
is complete and open (and therefore partially open) with M∇ = ∅. See
Figure 10, middle. There exists an M which is partially open and complete,
core(M) 6= ∅, leaves(M) 6= ∅, rooted and 0-rooted, with M∇ = ∅. See
Figure 10, right.

A node c is a downward 0-rooted point of M iff c ∈ M and there exists
a descendence path {p0, . . . , pk} such that

p0 ∈ leaves(M) ∧ c = pk ∧ ∀i ( 0 ≤ i ≤ k → pi ∈ M )

The set of all downward 0-rooted points of M is denoted by DRP (M).

Theorem 10 If G is 0-rooted, then M is partially open iff UXP (M) ⊆
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DRP (M).

Proof: Assume G is 0-rooted.
Assume M is partially open and let c ∈ UXP (M). Thus c 6∈ M and

there exists a b ∈ M such that dim(b) < dim(c). Hence L(c) 6= ∅ and, since
M is partially open, L(c) 6= ∅, and c 6∈ M = M−, we must have L(c) 6= M .
Thus there exists c′ ∈ I(c) ∩M such that dim(c′) < dim(c). Chose p0 = c
and p1 = c′.

Assume p0, . . . , pi have been chosen for some i ≥ 1, such that for all j
such that 1 ≤ j ≤ i, pj ∈ I(pj−1) and dim(pj) < dim(pj−1). If dim(pi) = 0
we set k = i and stop. Otherwise, since G is 0-rooted and dim(pi) > 0,
we have L(pi) 6= ∅. Since pi ∈ M, L(pi) 6= ∅,and M is partially open,
we have pi 6∈ M−. Hence there exists a pi+1 ∈ L(pi)\M . Thus we have
pi+1 ∈ I(pi)∩M and dim(pi+1) < dim(pi). This process will eventually end.

Define sj = pk−j , for each j such that 0 ≤ j ≤ k. Then {s0, . . . , pk} is a
descendence path with s0 ∈ leaves(M) and sk = c. Thus c ∈ DRP (M) and
therefore UXP (M) ⊆ DRP (M).

Assume UXP (M) ⊆ DRP (M). Let n = ind(G) and for 0 ≤ i ≤ n
consider the statement

P(i) ≡ 6 ∃c ∈ M\M with dim(c) = i

Suppose c ∈ M−\M and dim(c) = 0. Thus c ∈ leaves(M−) = leaves(M) ⊆
M. Therefore P(0) is true.

Assume P(j) is true for all j such that 0 ≤ j ≤ i for some i with 0 ≤ i < n
and suppose c ∈ M−\M with dim(c) = i + 1. Thus ∅ 6= L(c) ⊆ M−. Hence
there exists a c′ ∈ L(c) such that c′ ∈ I(c), dim(c′) < dim(c) = i + 1, and
c′ ∈ M−

i ⊆ M−. By assumption, since dim(c′) ≤ i, c′ 6∈ M−\M . Since
c′) ∈ M−, we must have c′ ∈ M . Hence c ∈ DXP (M) ⊆ URP (M). Thus
there exists a descendence path {p0, . . . , pk} such that p0 ∈ leaves(M),
pk = c, and pj ∈ M , for all j satisfying 0 ≤ j ≤ k. Since dim(c′) <
dim(c), dim(c) > 0 and so k > 0. Thus pk−1 ∈ I(c), dim(pk−1) < dim(c),
and pk−1 6∈ M . However, pk−1 ∈ L(c) ⊆ M−, which implies pk−1 ∈ M−\M
and dim(pk−1) = i. Thus, by assumption P(dim(pk−1)) is true which implies
pk−1 6∈ M−\M . This contradiction establishes that P(i + 1) is true and
therefore M−\M = ∅. Therefore M is partially open. ut

Corollary 14 A set M is closed and partially open iff DXP (M) = ∅ and
UXP (M) ⊆ DRP (M).

12 Concluding Remarks

This paper provides a comprehensive discussion of a topology on incidence
pseudographs, as introduced by Klaus Voss in 1993, and further discussed by
others in more recent years. (The references below only give a very limited
account of such work; for an extensive bibliography see, for example, (7).)
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The paper also discusses (for the first time) especially partially open sets,
as occurring in common (non-binary) digital picture analysis.

References

[1] S. Alayrangues and J.-O. Lachaud. Equivalence between order and cell
complex representations. In Proc. Computer Vision Winter Workshop,
pages 222-233, 2002.

[2] G. Bertrand. New notions for discrete topology. In Proc. DGCI, LNCS
1568, pages 216–226, 1999.

[3] G. Bertrand and M. Couprie. A model for digital topology. In Proc.
DGCI, LNCS 1568, pages 227–239, 1999.

[4] G.T. Herman. Geometry of Digital Spaces. Birkhäuser, Boston, Mas-
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