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 Abstract

This paper1 proposes a new approach to mental imagery
that has the potential for resolving an old debate. We
show that the methods by which fractals emerge from
dynamical systems provide a natural computational
framework for the relationship between the “deep” rep-
resentations of long-term visual memory and the “sur-
face” representations of the visual array, a distinction
which was proposed by (Kosslyn, 1980). The concept of
an iterated function system (IFS) as a highly compressed
representation for a complex topological set of points in
a metric space (Barnsley, 1988) is embedded in a con-
nectionist model for mental imagery tasks. Two advan-
tages of this approach over previous models are the
capability for topological transformations of the images,
and the continuity of the deep representations with
respect to the surface representations.

 The Imagery Debate

The phenomena of mental imagery is widely disputed
among cognitive scientists primarily because it occupies
a position in the boundary between perception and cog-
nition. On the one hand, mental images seem to be
purely symbolic structural descriptions that are indepen-
dent of any perceptual mechanisms. In this way images
are no different from any other knowledge structures and
therefore require no special purpose mechanisms, but
can be reasoned about and operated on in the traditional
propositional fashion. On the other hand, mental images
seem to be represented by a special-purpose cognitive
architecture that shares components with the visual per-
ceptual system. Under this approach, additional mecha-
nisms must be proposed for inspecting, transforming,
and reasoning about images, providing a means for
translating between purely symbolic representations and
the “visual buffer”.

This latter view that mental imagery is performed in
an analogue, “pictorial” medium began to regain accep-

1. This research has been partially supported by the
Office of Naval Research grant N00014-92-J-1195.

tance in the early 1970s as a result of empirical studies
which indicated both that mental imagery belongs to a
different modality than language and that there are cog-
nitive tasks in which mental imagery is brought into play
when symbolic reasoning and explicit knowledge is
insufficient for solving the problem.

As an example of the former, an experiment designed
by Lee Brooks (Brooks, 1968), required subjects to
imagine a block letter and report whether successive cor-
ners were at the extreme top or bottom of the letter. The
experiment showed that visually oriented responses (i.e.,
pointing to the letters Y or N) took longer than verbal re-
sponses (saying ‘yes’ or ‘no’) implying that the visual
response task was interfering with the imagery task. In a
similar experiment (also Brooks, 1968), he asked the
subjects to report whether successive words in a sen-
tence were nouns. In this case, verbal responses were
slower than visually oriented responses. Brooks’ conclu-
sion was that mental imagery is distinct from verbal pro-
cesses, and shares processing resources with the visual
perceptual system.

The most famous experiment illustrating the latter
was performed by Roger Shepard and Jacqueline Met-
zler on the mental rotation (Shepard & Metzler, 1971).
When presented with pairs of drawings of three dimen-
sional shapes at differing orientations that were either
identical or mirror images, the subjects were to report
whether the objects had the same shape, independent of
any difference in orientation. They found that the re-
sponse times varied linearly with the difference of angu-
lar rotation of the objects, which implied that the
subjects were performing a sort of “mental rotation” in
order to solve the problem.

Although extensive contributions have been made by
many researchers to the theory of analogue imagery (see
Finke, 1989; Chandrasekaran & Narayanan, 1990; Tye,
1991), most of its essential qualities have been incorpo-
rated into a single framework described by Stephen Ko-
sslyn (Kosslyn, 1981; Kosslyn, 1980). The primary
notion in Kosslyn’s theory is that the representations of
mental images are quasi-pictorial, or “picture-like”. This
means that in some way the representation preserves
some of the topological or spatial properties of the ob-
jects being represented, by embedding these relation-
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ships in the architectural and functional medium of the
representational mechanism. Kosslyn essentially recog-
nizes two structural components and two kinds of pro-
cesses in any encoding system. The constructs, which he
calls therepresentation and themedium, are data struc-
tures with the medium serving as a host to the represen-
tation. For example, when a circular queue is
implemented in a computer program as an array, the ar-
ray is the medium in which the queue is represented. It is
also important to note that the word “representation” is
being used to denote both the entire encoding system and
the data structure for a specific object, the usage being
determined from context. The processes which operate
within the encoding systems are either for making com-
parisons between representations, or parts of representa-
tions, or for transforming them in various ways
(including the generation of new representations in place
of old ones).

As in the distinction between sound and meaning in
language, there is a distinction between image and
meaning in mental imagery. Indeed, Kosslyn borrowed
the linguists’ termssurface anddeep representations to
capture this dichotomy. Surface representations are the
analogue, pictorial images which we attribute to the
“mind’s eye”. Deep representations are long term (sym-
bolic) memories that can be used to “display” images on
thevisual buffer, which serves as the viewing screen for
the mind’s eye. The visual buffer is analogous to the
memory a computer uses to store a bitmap for its display
monitor. This memory serves as afunctional coordinate
space, since while the mapping from the bits to the pix-
els must preserve the coordinates—which must also be
respected by any processes accessing the structure—
there is no constraint that the individual bits be physical-
ly contiguous.

Although the nature of the surface representations
has been specified in great detail in Kosslyn’s model, the
details of the deep representations have not been as well
developed. The theory suggests two types of deep repre-
sentation for visual images, called literal and proposi-
tional. The literal representations are intended to consist
of information about what an object looked like, without
any reference to coordinate spaces, but Kosslyn has been
unable to formulate an appropriate representation and
medium that is relevant to the theory:

“We have not as yet made any strong claims
about the precise format of the underlying lit-
eral encodings.” (Kosslyn, 1981)

The propositional encodings are simply assertions used
to describe the properties and features of an object,
which presumably can be manipulated by mechanized
logic. These representations are governed by syntax
driven rules for interpretation and manipulation that are
independent of the semantics of their values. The inter-
pretation of a representation is based on the truth-value
assigned to it under these rules.

Zenon Pylyshyn has been the most vocal opponent of
the analogue approach to mental imagery (Pylyshyn,

1981; Pylyshyn, 1973). However, rather than suggesting
an alternative, new theory, Pylyshyn questions the neces-
sity of abandoning the traditional theory of cognitive
processing as a physical symbol system of functional ar-
chitectures:

“In my view, however, the central theoretical
question in this controversy is whether the ex-
planation of certain imagery phenomena re-
quires that we postulate special types of
processes or mechanisms, such as ones com-
monly referred to by the termanalogue.…
whether certain aspects of cognition, generally
(though not exclusively) associated with imag-
ery, ought to be viewed as governed by tacit
knowledge…or whether they should be viewed
as intrinsic properties of certain representation-
al media or of certain mechanisms that are not
alterable in nomologically arbitrary ways by
tacit knowledge.” (Pylyshyn, 1981)

In order to substantiate his feeling that the answer to the
first question is ‘no,’ Pylyshyn attacks the analogue posi-
tion on two fronts.

The first attack consists of several specific criticisms
of the Kosslyn model. He claims that a theory can not
serve as a principled or constrained account of mental
imagery if it is not substantive (explanatory), or if it isad
hoc, or if it has too many degrees of freedom (free pa-
rameters). He asserts that the analogue theory fails on all
three counts. He does not claim that the analogue posi-
tion is wrong in principle, but simply that none of the
theories advanced so far have satisfied the conditions
necessary for a principled account. The crux of the fail-
ure of Kosslyn’s model, as he sees it is expressed in the
following quote from (Pylyshyn, 1981):

“Cognitive principles such as those invoked by
[Kosslyn] would only be theoretically substan-
tive (i.e., explanatory) if they specified (a) how
it was possible to have formal operations that
had the desired semantic generalization as their
consequence—that is, how one could arrange a
formal representation and operations upon it so
that small steps in the formal representations
corresponded to small steps in the represented
domain—and (b) why these particular opera-
tions, rather than some other ones that could
also accomplish the task, should be used…”

The second front on which Pylyshyn attempts to un-
dermine analogue imagery systems is parsimony. Even
the phrasing of the question quoted at the beginning of
this section betrays his belief that as long as a proposi-
tional attitude can account for all of the empirical evi-
dence on mental imagery, that to advance a theory
requiring specialized mechanisms violates Occam’s Ra-
zor. After all, Pylyshyn might say, if physical symbol
systems have succeeded in explaining this much of cog-
nition already, then the simplest thing would be if they
could do the whole job.

To provide an example of the error that Pylyshyn
perceives in the analogue viewpoint, he briefly discusses
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the scanning experiments Kosslyn performed with his
colleagues in the 1970’s (see Kosslyn, 1980). The results
of these experiments showed that the further away from
the current point of focus in an image a target object
was, the longer it took to refocus on the target. Pylyshyn
admits that this is clear evidence that inter-object dis-
tances are represented in mental images. However, he
balks at the conclusion that this implies that the images
have spatial extent. He argues here for a distinction be-
tween “having” and “representing” dimension or size.
Once this distinction is recognized, he insists, the argu-
ment of the previous paragraph becomes perfectly natu-
ral.

 The Dynamical Systems Road to Parsimony

The discovery within the last thirty years that non-linear
dynamical systems are capable of exhibiting determinis-
tic but unpredictable behavior and of generating fasci-
nating images has sent a reverberating ripple through the
physical sciences that caught the attention of world (Gle-
ick, 1987). As tools have begun to emerge over the last
three decades for analyzing, controlling and understand-
ing non-linear systems, the taboo against these non-lin-
earities has diminished, opening the doors for a broader
class of the sciences to assimilate dynamical modelling
into their theories.

As constituents of the physical universe, it is obvious
that brains are subject to physical law and the passage of
time, but it was not clear until very recently that there
was anything to be gained by viewing cognition, and its
various elements, from the physical perspective. For ex-
ample, the earliest use of dynamical systems as explana-
tory tools for cognitive functions came from
neuroscientific research, such as the work of Walter
Freeman on EEGs of the olfactory bulb (Freeman, 1979;
Skarda & Freeman, 1987). In the last decade dynamical
systems have been applied to coordinated behavior
(Kelso & Scholz, 1985; Jordan, 1986), decision process-
es (Usher & Zakay, 1990), language acquisition (Pol-
lack, 1991; van Gert, 1991) and several other aspects of
cognitive and perceptual processing.

The earliest inspirations for our current model can be
traced back to a research plan presented in (Pollack,
1989) in which it was proposed that it is within the inter-
section of AI, Neural Networks, Fractal Geometry and
Chaotic Dynamical Systems that various conundrums
for cognitive science will be resolved. In this work the
relationship between fractals and memories was pro-
posed:

“Consider something like the Mandelbrot set as
the basis for a reconstructive memory. Rather
than storing all pictures, one merely has to store
the ‘pointer’ to a picture, and, with the help of a
simple function and large computer, the picture
can be retrieved.…”

A reconstructive memory based upon fractals will re-
quire a solution to the “fractal inversion” problem: given

a picture within the generative range of some dynamical
system, determine the precise parameters that would
cause the dynamical system to generate it. Although a
very hard problem in general, a mathematician claims to
have solved it using the techniques of “Iterated Function
Systems” (IFSs) (Barnsley, 1988)2. In this approach, the
‘pointer’ referred to in the above quote would be a single
point in a multi-dimensional space of IFS parameters.
Although IFSs have primarily received attention for their
compact representation of visually complex two dimen-
sional sets (fractals), Barnsley’s results can be extended
to more classical Euclidean sets, or even to three dimen-
sions. This framework provides a strong mathematical
and parsimonious foundation for our contribution to the
imagery debate.

 Fractal Memory (FRAME)

We have been developing a prototype reconstructive
memory system based on fractals, called FRAME. Our
encoding system for images is derived from Barnsley’s
work on IFSs and is commensurate with Kosslyn’s
dichotomy of deep and surface levels of description. The
deep representation of an image is a small set of contrac-
tive affine transforms (i.e., linear functions, each of
which maps the domain to one of its subsets) over a met-
ric space (e.g. the Euclidean plane). The surface repre-
sentation is theattractor (i.e., fixed point) of the
functional union of this set, and can be constructed from
the trajectory of a single point in the metric space
through random selection and application of the trans-
forms. We have shown that our sequential cascaded net-
works (SCNs), which are mathematically similar to
IFSs, will exhibit state trajectories with complex, fractal
properties when randomly stimulated, indicating that a
simple neural model can instantiate the mathematical
theory of iterated functions (Pollack, 1991; for another
approach, see Stark, 1991).

While the images from IFSs are generally thought of
as the result of a random infinite sequential process, this
iterative process is extremely amenable to massive paral-
lellization, producing rapid visual image reconstruction
and even animation from the deep codes. This follows
from the fact that the image is the fixed-point attractor of
the IFS over the whole space. In other words, since every
point in the space follows a trajectory under the IFS that
approaches the attractor at an exponential rate, a large
number of processors running the same IFS (with differ-
ent random sequences and initial conditions) in parallel
will produce almost instantaneously a surface represen-
tation of the image that captures its gross structure. Of
course, finer detail will emerge over time.

2. This claim remains unverified, since his solution is
being treated as proprietary by his corporation, which is
selling digital image data compression systems.
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As mentioned above, one of the most difficult prob-
lems is finding the deep representation for a given im-
age. In FRAME, the fractal inversion problem is
refashioned as a neural network learning problem.
While we have not completely solved it, and acknowl-
edge the need for large amounts of domain knowledge,
we believe that the emergent complexity of simple non-
linear dynamical systems will provide a computationally
feasible solution. The following model is an initial con-
firmation of this hypothesis.

As a first step towards this goal we used a network
with the SCN architecture, which corresponds to the IFS
structure. This network models an IFS by tracing the or-
bit of a point in the unit square under a probabilistically
weighted sequence of transformations that are selected
by the inputs to the net. The outputs of the network are
recurrently connected back to the inputs, to simulate the
iterative nature of the IFS. The network is trained in a
supervised environment, in which the “teacher” knows
the IFS for the image which is being learned. Since the
teacher provides target outputs during training, the recur-
rent connections are only used during performance of the
network.

A training set was randomly generated by forming
triplets consisting of a point lying on the fractal attractor,
an index, and the image of the point under the indexed

transformation of the IFS for that attractor. The three
sets on which our training sets are based are typical frac-
tal images. These images, while lacking the geometric
simplicity of more traditional experimental stimuli, nev-
ertheless mirror the complexity of the stimuli found in
nature. The coefficients for the three IFSs we trained on
are displayed in the above table, in which each row rep-
resents a single affine transformation of the form

,
and the value ofp is the probabilistic weight of the trans-
formation in the reconstruction algorithm. The transfor-
mation indices were represented as 1-in-N encodings
presented as input to the network, while the output and
state of the network represented x-y coordinate values in
the unit square. Since the network’s task during training
is to induce the invariant mathematical relationships in
the training set, the training set needs to be large enough
to eliminate any bias. On the other hand, a large training
set imposes too many simultaneous constraints when
using epoch learning. To balance these considerations,
the network was only trained on a small subset of the
entire training set during each epoch, similar to the inde-
pendent method of (Cottrell & Tsung, 1991). In order to
solve the bias problem, a new subset was randomly cho-
sen at increasing intervals. The network was trained 100
epochs beyond convergence (Pollack, 1991), with the

f x y,( ) ax by e+ + cx dy f+ +,( )=

.
IFS a b c d e f p
Sierpinski’s Gasket 0.5 0.0 0.0 0.5 0.125 0.125 0.333

0.5 0.0 0.0 0.5 0.25 0.375 0.333
0.5 0.0 0.0 0.5 0.375 0.125 0.333

A Dragon 0.5 -0.4 0.5 0.5 0.429 0.143 0.5
0.5 -0.4 0.5 0.5 0.5 -0.214 0.5

Conch Spiral -0.24 -0.0825 0.125 -0.25 0.428 0.868 0.1
0.925 -0.225 0.266 0.925 0.15 -0.11 0.9

Figure 1: Table of coefficients for the affine transformations of three
IFSs approximated by FRAME networks

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 2: Reconstructed images generated from FRAME networks that learned the “deep representations”
of (a) Sierpinski’s Gasket, (b) a Fractal Dragon, and (c) a Conch Spiral.
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error threshold typically set to a value in the range [0.01,
0.05] and the overtraining usually distributed among
several training sets, due to the cycling algorithm. To
retrieve the image, the network is started with some ran-
dom initial point, whose trajectory is plotted for 5000
iterations. The first 50 points in the trajectory (transients)
are dropped, allowing it to approach the attractor. The
performances of the networks trained on the IFSs from
the table are pictured on the previous page. These results
show the representational efficacy of this architecture
and learnability of the set of transformations of an IFS.

One of the exciting aspects of our fractal representa-
tion for images is thatthe surface representations vary
continuously with the deep representations. In other
words, IFS codes meet Pylyshyn’s challenge of small
changes in one representation effecting small changes in
the other. Furthermore, it varies in a predictable fashion.
The affine nature of the transformations of an IFS allow
us to decompose a transform into its primitive compo-
nents: translation, rotation, and scaling. Thus the
equation
becomes

wherer ands are scaling factors,e andf are translational
parameters, andθ andϕ are angular rotation. Therefore,
any of these transformations of the image can be accom-
plished by simply manipulating the appropriate parame-
ters in the IFS.

 A surprising capability of our model is thatone im-
age can be continuously deformed into another image
merely by linearly interpolating between their deep
codes. This technique can be implemented in our cascad-
ed back propagation model by adding an additional cas-
caded layer to the network that chooses which code to
use. The deep representations for the images are loaded
into the upper network from long term memory as paral-
lel slices of its weight matrix. The inputs to this network

f x y,( ) ax by e+ + cx dy f+ +,( )=

f x
y 

  r θcos( ) x s ϕsin−( ) y e+ +
r θsin( ) x s ϕcos( ) y f+ + 

 
=

then select a linear combination of these representations
as the weights of the middle network, producing an in-
terpolated image (trajectory) on the lower net. Refer to
(Pollack, 1987) for architectural details. This is illustrat-
ed by the “snapshots” of an interpolation between the
spiral and the dragon shown above. By increasing the
number of snapshots—by reducing the grainsize of a dis-
crete interpolation—it is possible to produce an anima-
tion of the deformation process.

 Conclusions

As part of a general theory of reconstructive memory
based on fractal inversion, we demonstrate a neural net-
work that is capable of approximating the mathematical
theory of iterated function systems. This model
addresses the imagery debate in that the weights of the
network serve as the deep representation of an image,
which is reconstructed using fractal analogue tech-
niques. We believe this substantially addresses the foun-
dational needs of theories of mental imagery, such as
Kosslyn’s. This model also circumvents Pylyshyn’s sub-
stantivity criticism of Kosslyn’s work. The mathematics
in which our system is embedded guarantees that the sur-
face representation of an image will vary continuously
with the parameters in the deep representation. In other
words, small changes in one will correspond to small
changes in the other. This leads to the simple ability to
rotate, zoom, and translate mental images by operating
on the compact codes. It also leads to a prediction for a
cognitive ability to smoothly deform one image to
another, which is clearly a task of the “imagination,” and
which has not been accounted for by any other theories
that we are aware of to date.

There are two areas which are incomplete in our frac-
tal memory model. We have begun to solve the problem
of inducing deep representations from surface images by
constraining the learning task to a supervised environ-
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Figure 3: Reconstructed images from three intermediate stages in the smooth interpolation of the deep net-
work representations for the Fractal Dragon and the Conch Spiral.
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ment. However the general problem, which is much
more difficult, will be the focus of further research. A
second area of further work is in the design of a memory
system, containing many deep codes, that serves as a
mechanism for the recognition task. If the first problem
is solved, recognition of visual images can be done rath-
er quickly using nearest-neighbor techniques.

The complexity attributed to objects in the world is at
best dependent on the modelling tools and interpreta-
tions that are available. Fractal geometry’s first lesson
was that the apparent complexity of nature (e.g., the
shape of a tree or coastline, the branching structure of
rivers and lungs) simply reflected an unsuitable mathe-
matical formalism. Perhaps its second lesson will speak
more to the imagination.
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