
Otterbein University Otterbein University

Digital Commons @ Otterbein Digital Commons @ Otterbein

Mathematics Faculty Scholarship Mathematical Sciences

2001

JKarelRobot: A Case Study in Supporting Levels of Cognitive JKarelRobot: A Case Study in Supporting Levels of Cognitive

Development in the Computer Science Curriculum Development in the Computer Science Curriculum

Duane Buck
Otterbein University, DBuck@otterbein.edu

David J. Stucki
Otterbein University, dstucki@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/math_fac

 Part of the Computer Sciences Commons, and the Mathematics Commons

Repository Citation Repository Citation
Buck, Duane and Stucki, David J., "JKarelRobot: A Case Study in Supporting Levels of Cognitive
Development in the Computer Science Curriculum" (2001). Mathematics Faculty Scholarship. 15.
https://digitalcommons.otterbein.edu/math_fac/15

This Conference Proceeding is brought to you for free and open access by the Mathematical Sciences at Digital
Commons @ Otterbein. It has been accepted for inclusion in Mathematics Faculty Scholarship by an authorized
administrator of Digital Commons @ Otterbein. For more information, please contact
digitalcommons07@otterbein.edu.

https://digitalcommons.otterbein.edu/
https://digitalcommons.otterbein.edu/math_fac
https://digitalcommons.otterbein.edu/math
https://digitalcommons.otterbein.edu/math_fac?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.otterbein.edu/math_fac/15?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons07@otterbein.edu

JKarelRobot: A Case Study in
Supporting Levels of Cognitive Development

in the Computer Science Curriculum

Duane Buck and David J. Stucki
Otterbein College

Mathematical Sciences Department
Westerville, OH 43081

{DBuck, DStucki} @otterbein.edu

Abstract
We introduce a new software tool, JKarelRobot, for sup-
porting an Inside/Out pedagogy in introductory program-
ming courses. Extending the original conception of “Karel
the Robot”, with Bloom’s Taxonomy of Educational Objec-
tives as a guiding principle, we have provided a mechanism
for designing exercises that are cognitively appropriate to
the developmental levels of our students. JKarelRobot is
platform independent (written in Java) and lan-
guage/paradigm independent, supporting Pascal, Java, and
Lisp style environments.

Keywords

Inside/out Pedagogy, Software Tools, Karel the Robot,
Bloom’s Taxonomy, CS1, CS2.

1 Introduction

It has become patently clear in recent years that the SIG-
CSE community is embroiled in a Kuhnian [7] crisis of
pedagogical paradigms. As he described in The Structure of
Scientific Revolutions, Thomas Kuhn’s explanation of the
history of science as a sort of punctuated equilibrium1 the-
ory of the evolution of scientific knowledge can just as eas-
ily be seen as a metaphor for the recent history of computer
science education. Nowhere is this more obvious than in
recent debates surrounding Introductory Programming (I/O
in CS1, language for AP CS, objects first/last/whenever,
etc). A common underlying difficulty in such circumstances
is a lack of common vocabulary for discourse; but even
more fundamentally, the inadequacy of any common con-
ceptual framework to both capture pedagogical objectives
and account for experiential successes and failures.

In a previous paper discussing our pedagogy [2], we argued
that Bloom’s taxonomy of cognitive development should be

used to shape the computer science curriculum and provide
a vocabulary for discourse. Each level in the hierarchy is
subsumed by the next level, so that higher order functioning
requires by necessity the lower level skills. A summary of
these levels (adapted from [5]) can be found in the Appen-
dix. It is our belief that Bloom provides exactly the concep-
tual framework that is needed for our community to escape
to a period of Kuhnian normalcy.

As a case study of the application of these principles to
Computer Science Education we present a new educational
software tool called JKarelRobot, developed by the authors.
It greatly expands upon the groundbreaking work of Rich-
ard Pattis’s “Karel the Robot” environment [8]. By incorpo-
rating both new language features and support for novel
types of exercises into the Karel environment, we have
strengthened the pedagogical efficacy of this tool for CS1.
JKarelRobot allows the instructor to present targeted con-
cepts to students with neither the syntactical baggage nor
the complexities of a real programming environment.

2 Conceptual Framework

Our Inside/Out pedagogy involves an incremental, gradu-
ated exposure to complexity and structure based on the lev-
els of cognitive development described by Bloom [1].

Inside/out puts students in the context of an overall applica-
tion design in which they, while working on mastering one
level, can glimpse the more advanced concepts present in
the layered interface. They are asked to design and code
algorithms, first using only language primitives and later
some simple library calls. In the context of the design, they
are given complete specifications to which their algorithms
are expected to conform. Following Bloom, we have now
added exercises that are even more “inside” as a starting
point.

In our experience, mismatching the lesson to the level of
cognitive development of our students results in disaster.
Lab assignments, in the form of writing a complete program
(Synthesis), given before the students have achieved more

1 Interestingly, Peter B. Reintjes has suggested the concept of
punctuated equilibrium in Darwinian evolution as a metaphor
for software engineering practices. [9]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE 2001 2/01 Charlotte, NC USA
Copyright 2000 ACM 1-58113-329-4/01/0002 ... $5.00

16

primitive levels, leaves them overwhelmed, uncertain of
how to begin, and grasping at the air. Often, this leads them
to the self-destructive tendency to do experimental pro-
gramming, where they just randomly throw things in to see
if it helps. It is the students’ lack of comprehension of the
statements in isolation that keep them from being able to
mentally simulate the process, thus encouraging the random
walk through code space. Experimental programming has
proven to waste a huge amount of students’ time, in our
experience, with little actual learning. This is very different
from the isolated and controlled experimentation afforded
by interpretive environments, where complexity is har-
nessed and cause/effect is easily identified. Providing sup-
port for building the levels of cognition is the major objec-
tive of our study and has helped us shape our software tool.

A recent misunderstanding on the SIGCSE listserv (on the
part of one of the authors) as to how the word design is
used by the Teach Scheme [4] project anecdotally illus-
trates the need for a common language for describing peda-
gogical methods.

In [2] we took design to refer to systems design, the second
step of the software development life cycle. Felleisen, on
the other hand, uses the word design to refer to a problem
solving process that can be used in the small but scales to
“software design” in the large. So, in the light of our paper
“Design Early Considered Harmful,” when Felleisen
claimed that “what matters first is design,” there was an
apparent conflict. After more than a week of exchanging
email we discovered that we are fundamentally in agree-
ment on pedagogy for CS1. The semantic subtleties of the
word design might have been less of an issue if we had al-
ready shared a common conceptual framework like Bloom.

3 Karel the Robot

Our software tool extends the environment of Karel the
Robot. For those unfamiliar with Karel, here is a brief
summary. Karel's world is discrete, and as such he can only
exist at discrete coordinates. The vertical coordinates are
called streets and they run east to west, while the horizontal
coordinates are called avenues and run north to south. He is
also only able to face in one of the four cardinal compass
directions (north, south, east, west). The streets and avenues
are enumerated by the positive integers in a fashion similar
to that of quadrant I of the Cartesian plane. There are im-
penetrable barriers to the south of 1st street and to the west
of 1st avenue. In addition to Karel himself there are two
types of objects found in his world. Beepers are small de-
vices that emit a faint noise and are also only found at the
intersections of streets and avenues. There are also walls
that come in one-block segments and are situated halfway
between two intersections, centered on the street or avenue
they bisect.

Karel is also equipped with a variety of peripheral devices.
He has three video cameras, one facing forward, one to the
right, and one to the left. He is blind to the rear. The cam-

eras have a limited range, however, and only permit Karel
to see just less than one block in any direction. So he is
only able to detect the presence of a wall if he right up
against it (half a block away). Karel has a compass that tells
him which direction he is facing. He has a microphone that
is able to hear beeper noises, but it is also limited to hearing
beepers at his current intersection. Karel has a mechanical
arm and a bag. The arm can pick beepers up off the ground
and put them in the bag and take them out of the bag and
put them on the ground. Figure 1 shows how the world is
visualized in JKarelRobot:

Figure 1: Karel World Editor

The power of Karel the Robot as a teaching tool lies, we
think, in its being able to strip away details that are not im-
portant to the concept being taught and learned. This allows
students to more readily build a more intuitive conceptual
model. The unnecessary details eliminated in this case are
variables, replacing such an abstract notion of state with the
“state of the world” that Karel occupies. It is this visual
state that Karel’s program manipulates. This makes the
state more real to our students than collections of alphanu-
meric values stored in aliased memory locations.

Karel the Robot has proven to be an excellent teaching tool
and has been used widely, but it has significant limitations.
One limitation, in our experience, is that it does not provide
direct support for the Knowledge, Comprehension, and
Application levels. This is because students are forced im-
mediately to the Synthesis level by the software. (This is
not what is encouraged by Pattis’s book, but is effectively
what happens.) Also, unfortunately, Karel the Robot is only
used for a short time before the students outgrow it. So we
have extended the basic Karel language and environment in
two ways: (1) to support more directly the primitive levels
of cognitive development, and (2) to teach more concepts
and support more of the curriculum.

17

Realizing the heterogeneity of the computer science educa-
tion community, JKarelRobot was written in Java, and can
therefore be deployed on virtually any platform. But, per-
haps more importantly, it supports teaching with Pascal,
Java, or Lisp syntax, so that it can be used virtually regard-
less of the platform or teaching language used by a particu-
lar curriculum.

4 Building levels of cognition

During several years of using Karel the Robot in computer
literacy courses, we encountered more than a few students
that struggled with mastering the concepts. At the lowest
level, some students did not fully grasp the meaning of the
graphical display that attempted to visualize Karel in his
world. The display was too abstract. One method of over-
coming this cognitive gap was to smoothly animate Karel’s
moves and turns, so that the students see the actions as they
are carried out, not just the beginning and ending states of
each instruction. This bridges the gap between the display
and the students’ personal experiences of moving about in
the world, and brings Karel to life for them.

Another problem for the students was the necessity of writ-
ing a whole program as the first experience with the lan-
guage used to control Karel. This was too large a concep-
tual step. Although our tutorial started by having them do
very simple tasks, some students had significant difficulties
conceiving of how to develop a whole program without
fully understanding the primitive elements in isolation.

Figure 2: Karel’s Instant Window

We are not alone in these kinds of experiences. The mem-
bers of the Teach Scheme [4] project at Rice also propose
teaching first not by writing a stand-alone program, but by
issuing single expressions to an interpreter. They propose
that the beginning language be Scheme, because the lan-
guage is more “algebraic” than imperative languages. But
after extended discussion they also state that the nature of

the Scheme interpretive environment makes it easy and fun
for the students to learn the various statements through ex-
perience, that is, typing them in and seeing what happens.
We think that the interactive environment is a major factor
in their success, not necessarily the language that they use.

The utility of an interpretive environment for learning the
concepts of programming and algorithm development is an
important insight we gained from the Teach Scheme pro-
ject. We enhanced our JKarelRobot software, adding an
interpretive mode (see Figure 2). In the “Instant” window
the students can type in one or more statements and see
Karel carry them out immediately. If a statement is not syn-
tactically correct, the students get immediate feedback.

When we examine Bloom’s taxonomy for guidance, we
find that the interactive environment provides graduated
experiences through the cognitive levels. At the Knowl-
edge level we have the statements and their syntax. At the
Comprehension level is the capability of predicting what
the statement will cause Karel to do in his current situation.
We provide direct support for an interactive exercise at the
Comprehension level. As they single step through the pro-
gram the students are asked to predict the next statement
that will be executed. They are given a score at the end of
the run. At the Application level the students can apply a
statement to achieve a desired effect. Once we get to the
Analysis level, the compiled mode may also be used effec-
tively, although breaking control structures down may be a
good interactive exercise at the Analysis level.

Figure 3: Flow Chart Exercise

We feel that it is important for our students to learn the
language of classical flow charts, in order to be fully con-
versant in the field. However, because flowcharts have
largely been discredited pedagogically as a design tool, we
instead utilize them in an exercise at the Analysis level. The
task is to translate a given program from language control
structures into flowcharts (i.e., the reverse direction from

18

the historical usage). Doing the translations reinforces the
meaning of the control structures for them, and particularly
helps with nested control structures. Direct support for this
type of flowchart exercise is provided within JKarelRobot
(see Figure 3).

We have been teaching Java using the jGRASP edi-
tor/development environment from Auburn University [3].
jGRASP annotates the code with Control Structure Dia-
grams (CSDs), which give visual cues to the dynamic be-
havior of the code. It is multilingual in that the same basic
symbols can be used to annotate any imperative language. It
also supports ADA95, C, and C++. We have found that its
availability is important for our students to quickly com-
prehend the meaning of programs they develop (especially
nested control structures) or code they are asked to read.
However, the students are given only a brief introduction to
the symbols, and they mainly learn to read the annotation
on their own, in the process of doing other exercises. We
support CSDs in JKarelRobot so that the students become
accustomed to utilizing these powerfully evocative annota-
tions early on.

In another Analysis-level exercise, students are asked to
examine a given program, locate a minor error that keeps it
from meeting its specification, explain the error, and fix it.
A related assignment is to give the students a program,
along with its specification, and then ask them to implement
a program with slightly different specifications. The Syn-
thesis level is where we formerly incorrectly placed stu-
dents before they developed through the more primitive
cognitive levels. However, once they have worked through
earlier stages of the curriculum and have the cognitive
background, they can be asked to write a program that
meets a specification. At the highest level, Evaluation, we
have students compare two alternative implementations that
meet a common specification. One may ask “what’s the
difference in what we’re proposing at the higher cognitive
levels when one compares it to teaching with a traditional
programming language?” The beauty of Karel is that the
state of the world that Karel manipulates is more familiar to
beginning students than the more abstract concept of a vari-
able, so we have less interference with learning the control
structures.

5 Building beyond Karel the Robot in CS1

Students don’t just make one pass through the cognitive
levels, winding up enlightened! For each new topic, they
must start over and progress through the levels [6]. We can
make an analogy here with our experiences with the sys-
tems development process. The waterfall model has been
largely discredited, while the current trend is toward itera-
tive, incremental development with a lot of intermediate
builds, each adding more capabilities. The latter has proven
to be much more effective.

The first thing we added to Karel the Robot was Boolean
expressions. Students have found it frustrating not to have a

way to express the natural concepts of ‘and’ and ‘or,’ when
many problems naturally need to utilize compound condi-
tions in their solution. The students are therefore motivated
to learn Boolean expressions, and already have some of the
knowledge and comprehension needed to use them, from
their background using natural language. They can apply
Boolean expressions to the problem at hand, and then move
on to the other cognitive levels.

The question arises as to how much we should decompose
the topics and isolate each topic through the levels of cogni-
tive development. One runs the risk of alienating the stu-
dents by making things too artificial, too removed from the
world. This is a classic debate among educators. Our prac-
tice is to not necessarily go through all the cognitive levels
of a topic at one time, but to intermix the topics and return
to topics that have been suspended, similarly to Howard et
al. [6].

We looked for ways we could support more concepts from
the curriculum, which would incrementally build upon the
lessons learned with Karel. As an example, being given a
parameter, that is, an unknown that is supplied at a later
time, is fundamentally simpler than having a variable that
can dynamically take on different values during the opera-
tion of the algorithm. So, instead of adding variables to
Karel, with the extra baggage that entailed, we added the
ability to specify a parameter to a procedure. This lets us
cover procedure parameters (a symbol being bound to a
value) without the confusion of variables that are usually
present when the concept is taught. The student sees the
actual parameter being bound to the formal parameter as
the execution progresses.

We decided that integer parameters would be the most use-
ful. Karel the Robot already had positive integer constants
(used in definite iteration). To deal more fully with integers,
we added the integer functions succ(i) and pred(i). The stu-
dent can from these create integer expressions. An integer
expression can be used as an argument to the built-in Boo-
lean function iszero(i) (which we also added), or as the
count for definite iteration. Here, we do not offer infix nota-
tion, as we do for Boolean expressions because we feel that
is better delayed until variables are introduced in the target
programming language.

6 Future Work

Another application of JKarelRobot we plan to explore this
year is in teaching recursion. All three language modes al-
low recursion, and we provide support for visualizing re-
cursion. Recursion provides natural exercise involving pa-
rameters (although recursion could be naturally introduced
at this point without using parameters as well). Even though
recursion was originally added to JKarelRobot to support
teaching in the Lisp syntax, it has led us to explore an early
introduction to recursion in CS1 using Java syntax.

Another way we enhanced the software was to add addi-
tional languages to control Karel. We had two motivations

19

here. One was to provide a closer match to the target lan-
guage of the first course, so that JKarelRobot could support
more curricula. However, providing more languages can
also provide support for a Languages course. We are cur-
rently investigating using JKarelRobot in this way at Otter-
bein. JKarelRobot supports Pascal, Java, and Lisp syntax.
This provides an opportunity for students to learn addi-
tional notations without having to learn a new development
environment at the same time, thus driving home the com-
monalities of structure. In fact, a good multi-lingual exer-
cise is translation of an algorithm from one language to
another.

Modules can be developed in all three languages and calls
can be made between them. The instant window supports
all three languages, and may call upon compiled modules of
any of the languages. For Pascal and Java syntax, param-
eterized procedure calls are statically checked in the com-
piled mode. For all three languages, the calls are dynami-
cally checked in the interpretive mode. This allows students
to experience the difference of dynamic verses static check-
ing.

7 Conclusion

We have recognized that the natural tendency to teach ac-
cording to the structure of one’s own understanding runs
contrary to established models of cognitive development.
Bloom’s Taxonomy has provided a basis for establishing a
more efficacious pedagogy, particularly helping to identify
topics, exercises, and assignments for CS1 and CS2. Em-
phasizing a hierarchical progression of skill sets and grad-
ual learning through example, our approach advocates
teaching software development from the inside/out rather
than beginning with whole programs. With JKarelRobot,
we provide further support for our approach. We have also
developed web-based materials supporting our approach in
Java, and have made them freely available to the commu-
nity at http://math.otterbein.edu/JKarelRobot.

8 Appendix: Bloom’s Taxonomy

8.1 Knowledge

The remembering of previously learned material. This may
involve the recall of a wide range of material, from specific
facts to complete theories, but all that is required is the
bringing to mind of the appropriate information.

8.2 Comprehension

The ability to grasp the meaning of material. This may be
shown by translating material from one form to another
(words to numbers), by interpreting material (explaining or
summarizing), or by estimating future trends (predicting
consequences or effects).

8.3 Application

The ability to use learned material in new and concrete
situations. This may include the application of such things
as rules, methods, concepts, principles, laws, and theories.

8.4 Analysis

The ability to break down material into its component parts
so that its organizational structure may be understood. This
may include the identification of parts, analysis of the rela-
tionship between parts, and recognition of the organiza-
tional principles involved.

8.5 Synthesis

The ability to put parts together to form a new whole. This
may involve the production of a unique communication
(theme or speech), a plan of operations (research proposal),
or a set of abstract relations (scheme for classifying infor-
mation). Stresses creative behaviors, with major emphasis
on the formulation of new patterns or structure.

8.6 Evaluation

The ability to judge the value of material (statement, novel,
poem, research report) for a given purpose. The judgments
are to be based on definite criteria. These may be internal
criteria (organization) or external criteria (relevance to the
purpose) and the student may determine the criteria or be
given them.

References

[1] Bloom, B.S., et al. Taxonomy of Educational Objec-
tives: Handbook I: Cognitive Domain, Longmans,
Green and Company, 1956.

[2] Buck, D.B and Stucki, D.S. Design Early Considered
Harmful: Graduated Exposure to Complexity and
Structure Based on Levels of Cognitive Development.
Proceedings ACM SIGCSE Symposium, 2000, 75-79.

[3] Cross, J.H., Maghsooloo, S., and Hendrix, T.D. The
Control Structure Diagram: An Initial Evaluation. Em-
pirical Software Engineering, Vol. 3, No. 2, 131-156,
1998.

[4] Felleisen, M., et al. How to Design Programs: An In-
troduction to Programming and Computing, MIT
Press, 2001.

[5] Gronlund, N.E. and Linn, R.L. Measurement and
Evaluation in Teaching, 6th ed., Macmillan, 1990.

[6] Howard, R.A., Carver, C.A, and Lane, W.D., Felder’s
Learning Styles, Bloom’s Taxonomy, and the Kolb
Learning Cycle: Tying It All Together in the CS2
Course, Proceedings ACM SIGCSE Symposium, 1996,
227-231.

[7] Kuhn, T.S. The Structure of Scientific Revolutions, 3rd

ed., University of Chicago Press, 1996.

[8] Pattis, R.E. Karel the Robot: A Gentle Introduction to
the Art of Programming, 2nd ed., Wiley, 1995.

[9] Reintjes, P.B. Prolog for Software Engineering, 1994
International Conference on the Practical Applications
of Prolog, http://www.logic-programming.org/people/
Reintjes_Peter/se94.htm

20

	JKarelRobot: A Case Study in Supporting Levels of Cognitive Development in the Computer Science Curriculum
	Repository Citation

	tmp.1414776714.pdf.JVVYR

