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TSIL: a program for the calculation of two-loop self-energy integrals

Stephen P. Martina,b and David G. Robertsonc

(a) Department of Physics, Northern Illinois University, DeKalb IL 60115

(b) Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510

(c) Department of Physics and Astronomy, Otterbein College, Westerville OH 43081

Abstract

TSIL is a library of utilities for the numerical calculation of dimensionally regularized two-loop
self-energy integrals. A convenient basis for these functions is given by the integrals obtained at
the end of O.V. Tarasov’s recurrence relation algorithm. The program computes the values of all
of these basis functions, for arbitrary input masses and external momentum. When analytical
expressions in terms of polylogarithms are available, they are used. Otherwise, the evaluation
proceeds by a Runge-Kutta integration of the coupled first-order differential equations for the
basis integrals, using the external momentum invariant as the independent variable. The starting
point of the integration is provided by known analytic expressions at (or near) zero external
momentum. The code is written in C, and may be linked from C, C++, or Fortran. A Fortran
interface is provided. We describe the structure and usage of the program, and provide a simple
example application. We also compute two new cases analytically, and compare all of our
notations and conventions for the two-loop self-energy integrals to those used by several other
groups.
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1 Program summary

Title of program: TSIL

Version number: 1.3

Available at: http://www.niu.edu/spmartin/TSIL/

http://faculty.otterbein.edu/DRobertson/tsil/

Programming Language: C

Platform: Any platform supporting the GNU Compiler Collection (gcc), the Intel C compiler (icc),

or a similar C compiler with support for complex mathematics

Distribution format: ASCII source code

Keywords: quantum field theory, Feynman integrals, two-loop integrals, self-energy corrections,

dimensional regularization

Nature of physical problem: Numerical evaluation of dimensionally regulated Feynman integrals

needed in two-loop self-energy calculations in relativistic quantum field theory in four dimensions
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Method of solution: Analytical evaluation in terms of polylogarithms when possible, otherwise

through Runge-Kutta solution of differential equations

Limitations: Loss of accuracy in some unnatural threshold cases that do not have vanishing masses

Typical running time: Less than a second

2 Introduction

The precision of measurements within the Standard Model requires a level of accuracy obtained

from two-loop, and even higher-order, calculations in quantum field theory. The future discoveries

of the Large Hadron Collider and a future e+e− linear collider may well extend these requirements

even further. For example, supersymmetry predicts the existence of many new particle states with

perturbative interactions. The most important observables in softly broken supersymmetry are just

the new particle masses. Therefore, comparisons of particular models of supersymmetry breaking

with experiment will require systematic methods for two-loop computations of physical pole masses

in terms of the underlying Lagrangian parameters.

In this paper, we describe a software package called TSIL (Two-loop Self-energy Integral Li-

brary)† that can be used to compute two-loop self-energy functions. In a general quantum field

theory, the necessary dimensionally regularized Feynman integrals can be expressed in the form:

µ8−2d
∫

ddk

∫

ddq
(k2)n1(q2)n2(k · p)n3(q · p)n4(k · q)n5

[k2 + x]r1 [q2 + y]r2 [(k − p)2 + z]r3 [(q − p)2 + u]r4 [(k − q)2 + v]r5
, (2.1)

for non-negative integers ni, ri. (See the master topology M in Figure 1.) The integrations are over

Euclidean momenta in

d = 4− 2ǫ (2.2)

dimensions. An algorithm has been derived by O.V. Tarasov [1], and implemented in a Mathematica

program TARCER by Mertig and Scharf [2], that allows all such integrals to be systematically

reduced to linear combinations of a few basis integrals. The coefficients are ratios of polynomials in

the external momentum invariant and the propagator squared masses x, y, z, u, v. In the remainder

of this section, we will describe our notations and conventions‡ for the two-loop basis integrals and

some related functions, and describe the strategy used by TSIL to compute them.

First, we define a loop factor

C = (16π2)
µ2ǫ

(2π)d
= (2πµ)2ǫ/π2. (2.3)

The regularization scale µ is related to the renormalization scale Q (in the modified minimal sub-

traction renormalization scheme based on dimensional regularization [6], or dimensional reduction

†In the Hopi culture indigenous to the American southwest, Tsil is the Chili Pepper Kachina, one of many
supernatural spirits represented by masked doll-like figurines and impersonated by ceremonial dancers. Tsil is one of
the runner Kachinas. When he overtakes you in a race, he may stuff your mouth with hot chili peppers.

‡These are the same as in refs. [4, 5]; the correspondences with some other papers is given in Appendix A.
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Figure 1: Feynman diagram topologies for the one- and two-loop vacuum and self-energy integrals
as defined in this paper.

[7] for softly-broken supersymmetric theories) by

Q2 = 4πe−γµ2. (2.4)

Logarithms of dimensionful quantities are always given in terms of

lnX ≡ ln(X/Q2). (2.5)

The loop integrals are functions of a common external momentum invariant

s = −p2 (2.6)

using a Euclidean or signature (−+++) metric. (Note that the sign convention is such that for

a stable physical particle with mass m, there is a pole at s = m2.) On the physical sheet, s has

an infinitesimal positive imaginary part. Since all functions in any given equation typically have

the same s and Q2, they are not included explicitly in the list of arguments in written formulas.

A prime on a squared-mass argument of a function indicates differentiation with respect to that

argument. Thus, for example

f(x′, x, z′) =

[

∂2

∂y∂z
f(y, x, z)

]

y=x

. (2.7)

We now define one-loop vacuum and self-energy integrals as:

A(x) = C

∫

ddk
1

[k2 + x]
(2.8)

B(x, y) = C

∫

ddk
1

[k2 + x][(k − p)2 + y]
. (2.9)

We also define two-loop integrals according to:

S(x, y, z) = C2
∫

ddk

∫

ddq
1

[k2 + x][q2 + y][(k + q − p)2 + z]
(2.10)
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I(x, y, z) = S(x, y, z)|s=0 (2.11)

T(x, y, z) = −S(x′, y, z) (2.12)

U(x, y, z, u) = C2
∫

ddk

∫

ddq
1

[k2 + x][(k − p)2 + y][q2 + z][(q + k − p)2 + u]
(2.13)

V(x, y, z, u) = −U(x, y′, z, u) (2.14)

M(x, y, z, u, v) = C2
∫

ddk

∫

ddq
1

[k2 + x][q2 + y][(k − p)2 + z][(q − p)2 + u][(k − q)2 + v]
. (2.15)

The corresponding Feynman diagram topologies are shown in fig. 1. These integrals have various

symmetries that are clear from the diagrams: B(x, y) is invariant under interchange of x, y; the

“sunrise” integral S(x, y, z) and I(x, y, z) are invariant under interchange of any two of x, y, z;

T(x, y, z) is invariant under y ↔ z; U(x, y, z, u) and V(x, y, z, u) are invariant under z ↔ u; and

the “master” integral M(x, y, z, u, v) is invariant under each of the interchanges (x, z) ↔ (y, u),

and (x, y) ↔ (z, u), and (x, y) ↔ (u, z).

It is often convenient to introduce modified integrals in which appropriate divergent parts

have been subtracted and the regulator removed. At one-loop order, we define the finite and

ǫ-independent integrals:

A(x) = lim
ǫ→0

[A(x) + x/ǫ] = x(lnx− 1) (2.16)

B(x, y) = lim
ǫ→0

[B(x, y)− 1/ǫ] = −
∫ 1

0
dt ln[tx+ (1− t)y − t(1− t)s]. (2.17)

At two loops, we let

S(x, y, z) = lim
ǫ→0

[

S(x, y, z) − S
(1)
div(x, y, z) − S

(2)
div(x, y, z)

]

, (2.18)

where

S
(1)
div(x, y, z) = (A(x) +A(y) +A(z)) /ǫ (2.19)

S
(2)
div(x, y, z) = (x+ y + z)/2ǫ2 + (s/2− x− y − z)/2ǫ (2.20)

are the contributions from one-loop subdivergences and from the remaining two-loop divergences,

respectively. In addition,

I(x, y, z) = S(x, y, z)|s=0 (2.21)

T (x, y, z) = −S(x′, y, z). (2.22)

Similarly, we define

U(x, y, z, u) = lim
ǫ→0

[

U(x, y, z, u) − U
(1)
div(x, y)− U

(2)
div

]

(2.23)

where

U
(1)
div(x, y) = B(x, y)/ǫ (2.24)

U
(2)
div = −1/2ǫ2 + 1/2ǫ (2.25)
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are again the contributions from one-loop sub-divergences and the remaining two-loop divergences.

Also, we define

V (x, y, z, u) = −U(x, y′, z, u). (2.26)

The master integral is free of divergences, so we define

M(x, y, z, u, v) = lim
ǫ→0

M(x, y, z, u, v). (2.27)

Thus, bold-faced letters A,B, I,S,T,U,V represent the original regularized integrals that di-

verge as ǫ → 0, while the ordinary letters A,B, I, S, T, U, V,M are used to represent functions that

are finite and independent of ǫ by definition. Note, however, that as defined above I, S, T, U, V are

not simply the ǫ-independent terms in expansions in small ǫ. The following expansions are useful

for converting between I,S,T,U,V and I, S, T, U, V :

A(x) = −x/ǫ+A(x) + ǫAǫ(x) +O(ǫ2) (2.28)

B(x, y) = 1/ǫ+B(x, y) + ǫBǫ(x, y) +O(ǫ2), (2.29)

where

Aǫ(x) = x[−1− ζ(2)/2 + lnx− (lnx)2/2] (2.30)

Bǫ(x, y) = ζ(2)/2 +
1

2

∫ 1

0
dt (ln[tx+ (1− t)y − t(1− t)s])2. (2.31)

Here ζ is the Riemann zeta function. The functionBǫ(x, y) can be expressed in terms of dilogarithms

[8], and is given by the coefficient of δ in eq. (83) of ref. [9]. Also,

B(x′, y) =
[

(3− d)(s − x+ y)B(x, y) + (2− d){A(y) + (s− x− y)A(x)/2x}
]

/∆sxy (2.32)

where

∆abc ≡ a2 + b2 + c2 − 2ab− 2ac− 2bc. (2.33)

From the preceding equations it follows that

I(x, y, z) = −(x+ y + z)/2ǫ2 + [A(x) +A(y) +A(z)− (x+ y + z)/2] /ǫ (2.34)

+I(x, y, z) +Aǫ(x) +Aǫ(y) +Aǫ(z) +O(ǫ)

S(x, y, z) = −(x+ y + z)/2ǫ2 + [A(x) +A(y) +A(z)− (x+ y + z)/2 + s/4] /ǫ (2.35)

+S(x, y, z) +Aǫ(x) +Aǫ(y) +Aǫ(z) +O(ǫ)

T(x, y, z) = 1/2ǫ2 − [A(x)/x+ 1/2] /ǫ+ T (x, y, z) + [A(x)−Aǫ(x)]/x +O(ǫ) (2.36)

U(x, y, z, u) = 1/2ǫ2 + [1/2 +B(x, y)] /ǫ+ U(x, y, z, u) +Bǫ(x, y) +O(ǫ) (2.37)

V(x, y, z, u) =
1

ǫ
[(s + x− y)(B(x, y)− 1) + 2A(x) + (s− x− y)A(y)/y]/∆sxy (2.38)

+V (x, y, z, u) +
{

(s+ x− y)[Bǫ(x, y)− 2B(x, y)] + 2Aǫ(x)− 2A(x)

+(s− x− y)[Aǫ(y)−A(y)]/y
}

/∆sxy +O(ǫ)

M(x, y, z, u, v) = M(x, y, z, u, v) +O(ǫ). (2.39)
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The internal workings of the TSIL code use the functions A,B, I, S, T, U, V,M rather than

their bold-faced counterparts. This is because we find that renormalized expressions for physical

quantities are more compactly written in terms of the non-bold-faced integrals. However, both

types of functions are available as outputs, with the proviso that for I,S,T,U,V,M we keep only

the pole and finite terms as ǫ → 0, and for A,B only terms through order ǫ.

Tarasov’s algorithm [1] allows any integral of the form of eq. (2.1) to be expressed§ as a linear

combination of the following two-loop basis integrals:

M(x, y, z, u, v), U(z, x, y, v), U(u, y, x, v), U(x, z, u, v), U(y, u, z, v), T (v, y, z),

T (u, x, v), T (y, z, v), T (x, u, v), T (z, y, v), T (v, x, u), S(v, y, z), S(u, x, v), (2.40)

plus terms involving the two-loop vacuum integrals I(x, y, v) or I(z, u, v), or quadratic in the one-

loop integrals.

In particular, the V and V integrals can be expressed as linear combinations of the others (see

eqs. (3.22)–(3.28) and (6.21) of ref. [4]), and so are not included in the basis. However, they are

included as outputs, because some results are more compactly written in terms of them. Because

T (x, y, z) is divergent in the limit x → 0, it is also sometimes useful to define the function:

T (x, y, z) = T (x, y, z) + B(y, z) lnx. (2.41)

For x = 0, this function is well-defined and can be written in terms of dilogarithms (see eqs. (6.18)–

(6.19) of ref. [4]). In that limit it can also be rewritten in terms of the other basis functions, see

eqs. (A.15)–(A.16) of ref. [5], but is still available as an output of TSIL for convenience.

It remains to provide a means for the numerical computation of the basis integrals. For special

values of masses and external momentum, it is possible to compute the two-loop integrals analyt-

ically in terms of polylogarithms [10]. This requires [11] that there is no three-particle cut of the

diagram for which the cut propagator masses m1, m2, m3 and the five quantities

scut, scut − (m1 ±m2 ±m3)
2, (2.42)

(where scut = −p2cut is the momentum invariant for the total momentum flowing across the cut)

are all non-zero. Many analytical results for various such special cases have been worked out in

refs. [12]–[20], [9], [4], and Appendix B of the present paper. There are also expansions [21]–

[25] in large and small values of the external momentum invariant, and near the thresholds and

pseudo-thresholds [26]–[35]. Analytical results in terms of polylogarithms for the A,B, I, S, T, U,M

functions at generic values of s are reviewed in section VI of ref. [4]. These and some other analytical

formulas for special cases have been implemented in the TSIL code. They consist of the master

§Actually, Tarasov’s algorithm relates the general integral to the bold-faced versions of the basis functions, and
holds for general d. By neglecting contributions that vanish for ǫ → 0, one can write the results in terms of the
non-bold-faced functions.
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integral cases:

M(x, x, y, y, 0), M(0, 0, 0, x, 0), M(0, x, 0, x, x), ref. [16]

M(0, 0, 0, 0, x), M(0, x, 0, y, 0), ref. [9]

M(0, 0, 0, x, x), M(0, x, x, 0, 0), M(0, x, x, x, 0), ref. [19]

M(0, 0, x, y, 0), Appendix B

M(0, x, x, 0, x)|s=x, ref. [16]

M(0, y, y, 0, x)|s=x, Appendix B

M(0, x, y, 0, y)|s=x, refs. [36, 37] (see also Appendix B)

and functions obtained by permutations of the arguments, and all subordinate integrals A, B, I,

S, T , U , V , T that have topologies obtained by removing one or more propagator lines from the

cases above. These include:

U(x, y, 0, y), ref. [15]

U(x, y, 0, 0), U(0, 0, 0, x), ref. [9]

U(0, x, y, z), ref. [4]

U(x, 0, 0, y), ref. [5]

U(x, 0, y, y)|s=x, U(y, 0, y, x)|s=x, refs. [38, 39] (see also Appendix B)

and

S(0, x, y), T (x, 0, y), T (0, x, y), ref. [18]

S(x, y, y)|s=x, T (x, y, y)|s=x, T (y, x, y)|s=x. refs. [38, 29]

Also included are all of the functions at s = 0, which can be easily expressed in terms of the A

and I functions and derivatives of them, which are in turn known [14, 40] analytically in terms of

logarithms and dilogarithms.

For the case of generic masses and s, another method is needed. Integral representations have

been studied in refs. [41]–[50]. For TSIL, we instead use the differential equations method [51]–[52]

to evaluate the integrals numerically. For the S, T and U integrals, this strategy was proposed and

implemented in [53]–[57]. The method was rewritten in terms of the S, T, U integrals and extended

to M in ref. [4]. To see how the method works, consider the functions listed in eq. (2.40) and also

B(x, z) and B(y, u) and the product B(x, z)B(y, u). Let us denote these sixteen quantities by Fi

where i = 1, . . . , 16. Considered as functions of s for fixed x, y, z, u, v, Q2 they can be shown to

satisfy a set of coupled first-order differential equations of the form

d

ds
Fi =

∑

j

CijFj + Ci, (2.43)

where the coefficients Cij and Ci are ratios of polynomials in the squared masses and s (and of

the analytically known A and I functions, for some of the coefficients not multiplying two-loop

8



Re[s]

Im[s]

thresholds

Figure 2: When s is greater than or equal to the smallest non-zero threshold or pseudo-threshold,
the Runge-Kutta integration proceeds along a contour with the shape shown here, as suggested in
ref. [56].

functions). The coefficients can be evaluated by using Tarasov’s recurrence relations, and were

listed in [4].

At s = 0 the values of all of the functions and their derivatives with respect to s (and/or their

expansions in small s) are known analytically in terms of dilogarithms. Therefore, one can integrate

the functions¶ by the Runge-Kutta method to any other value of s. In order to avoid numerical

problems from integrating through thresholds and pseudo-thresholds, we use the suggestion of

ref. [56] by following a displaced contour in the upper-half complex s plane, as shown in fig. 2,

whenever s is greater than the smallest non-zero threshold or pseudo-threshold. This contour

starts from s = 0 (or, in some cases, a point very close by, as explained in the next section) and

proceeds to a point isim, from there to s+ isim, and from there to the desired value s. Here sim is

real and positive. Since s has an infinitesimal positive imaginary part on the physical sheet, this

procedure also automatically produces the correct branch cut behavior for functions when s is above

thresholds. When s is less than or equal to the smallest non-zero threshold or pseudo-threshold,

the Runge-Kutta integration instead proceeds directly along the real s axis. In typical physical

problems, if the master integral is needed, then so will be all of its subordinate B,S, T, U integrals.

These are all obtained simultaneously as a result of the Runge-Kutta method. Furthermore, checks

on the numerical accuracy can be made by varying the Runge-Kutta step size parameters and the

choice of contour in the upper-half complex s plane.

Most of the practical difficulties in realizing this program have to do with numerical instabilities

when the final value of s is at or near a threshold or pseudo-threshold, or when the starting point

s = 0 is itself a threshold. We describe these issues and the methods used by TSIL to successfully

evade them in the next section.

¶For the master integral, we actually run sM(x, y, z, u, v).
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3 Numerical considerations near thresholds and pseudo-thresholds

The two-loop master integral function M(x, y, z, u, v), and its subordinates listed in eq. (2.40), have

two-particle and three-particle thresholds at s equal to:

txz = (
√
x+

√
z)2, tyu = (

√
y +

√
u)2, (3.1)

txuv = (
√
x+

√
u+

√
v)2, tyzv = (

√
y +

√
z +

√
v)2. (3.2)

At the thresholds, the integral functions have branch cuts, and they therefore develop imaginary

part contributions for s > sthresh. The pseudo-thresholds occur at s equal to:

pxz = (
√
x−

√
z)2, pyu = (

√
y −

√
u)2, (3.3)

pxuv = (−
√
x+

√
u+

√
v)2, puxv = (

√
x−

√
u+

√
v)2, (3.4)

pvxu = (
√
x+

√
u−

√
v)2, pyzv = (−√

y +
√
z +

√
v)2, (3.5)

pzyv = (
√
y −

√
z +

√
v)2, pvyz = (

√
y +

√
z −

√
v)2. (3.6)

The integral functions are analytic at the pseudo-threshold points (unless they coincide with a

threshold), but the coefficients in the differential equation have pole singularities at both the thresh-

olds and pseudo-thresholds. For values of s close to both types of special points, one must therefore

be careful in numerical evaluation to avoid undefined quantities and round-off errors. In this section,

we discuss the ways in which TSIL avoids these problems.

First, we consider the case that the initial point of the Runge-Kutta integration, s = 0, is

actually a threshold. This occurs for master integrals M(0, y, z, 0, 0) and M(0, y, 0, u, v), and per-

mutations thereof. In these cases, some of the basis integral functions have logarithmic singularities

and/or branch cuts at s = 0. To deal with this, we make a change of independent variable to

r = ln(−s), (3.7)

and start the integration at a point r0 = ln(−iδ) = ln(δ)−iπ/2, with δ real, positive, and extremely

small (of order the relative error of the computer arithmetic). The initial values of the integrals are

obtained from the expansions in small s, given in section V of ref. [4]. This change of variables is

also used when s = 0 is close to, but not exactly a threshold (with the exact criteria adjustable by

the user). This variable r is used for the first leg of the contour in the Runge-Kutta integration.

Next, consider the case that the final value of s is at, or very near, a threshold sthresh. In this

case, we find that the change of variable

r = ln(1− s/sthresh) (3.8)

is effective, and so is used by TSIL for the final part of the Runge-Kutta integration. When the

final value of s is exactly equal to a threshold, then the endpoint of the running is taken to be

r = ln(δ)− iπ/2, with δ again taken to be real, positive, and extremely small.

We next describe the Runge-Kutta algorithms used, since they have some slightly unusual

properties dictated by the need for control of precision near thresholds and pseudo-thresholds.
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Consider a vector of quantities ~F that satisfy coupled first-order differential equations d~F/dt =

~f(t, ~F ). The general form for an explicit m-stage Runge-Kutta routine advancing the solution from

t to t+ h is given by:

~F (t+ h) = ~F (t) + h
m
∑

i=1

bi~ki, (3.9)

where

~ki = ~f(t+ cih, ~F (t) + h
i−1
∑

j=1

aij~kj) (for i = 1, . . . ,m). (3.10)

Here aij, bi, and ci are known as Butcher coefficients, and satisfy c1 = 0, a10 = 0, and

ci =
i−1
∑

j=1

aij (for i = 2, . . . ,m) (3.11)

m
∑

i=1

bi = 1 (3.12)

plus other, non-linear, constraints [58]. The algorithm is said to be of nth order if the error is

proportional to hn+1 for sufficiently small h. In order to implement automatic step-size adjustment,

we use a 6-stage embedded Runge-Kutta [59] with coefficients given by Cash and Karp [60]. These

give not only a 5th-order step as in eq. (3.9), but a 4th-order step estimate of the same form with

different coefficients b∗i . This gives an error estimate for each dependent variable, for each step:

∆~F (t+ h) = h
m
∑

i=1

(bi − b∗i )
~ki. (3.13)

The theoretical estimate of the step size needed so that the error for each dependent variable is less

than δP times the increment of that variable is then given by:

hnew = hS

[

δP

Max(|∆~F |)

]1/4

, (3.14)

where S is a safety factor less than unity.

However, in the present application there is a special problem because the final destination point

might be equal to (or close to) a threshold or pseudo-threshold. There, the individual coefficients in

the derivatives of the functions might be ill-defined (or subject to large numerical round-off errors,

because of small denominators in individual terms), even though the basis functions themselves

are well-defined. To avoid this problem, we instead need to use an m-stage Runge-Kutta with the

crucial property ci < 1 for all i, so that no derivatives are ever evaluated at the endpoint. There are

no 4-stage, 4th-order solutions to the Butcher coefficient conditions with this property, but there

are many 5-stage, 4th-order solutions. We chose, somewhat arbitrarily, the set:

ci = (0, 1/4, 3/8, 1/2, 5/8) (3.15)

bi = (−1/15, 2/3, 4/3, −10/3, 12/5) (3.16)

a21 = 1/4, a32 = 3/8, a42 = 1/2, a52 = 35/72, a54 = 5/36, (3.17)

aij = 0 for other i, j. (3.18)
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This procedure is not as efficient as the Cash-Karp 6-stage, 5th-order algorithm under normal

circumstances, and does not provide an error estimate, so it is used only where needed for the very

last Runge-Kutta step.

The TSIL implementation of the coefficients Cij and Ci in eqs. (2.43) is also done in a special

way to avoid roundoff errors near thresholds and pseudo-thresholds. The expressions as given in

[4] for these coefficients appear to have double (or higher) poles in s for some special values of

the masses with degenerate thresholds and pseudo-thresholds. The presence of such higher-order

poles can lead to large round-off errors, due to incomplete cancellations in computer arithmetic

with finite precision. Fortunately, this is avoided in most cases by applying the partial fractions

technique to rewrite the coefficients in the derivatives with respect to s, so that all poles in s are

at most simple poles. This can always be done for the B, S, and T functions.

For the U functions, double poles in the coefficient functions for the derivative with respect to s

remain only if the second argument vanishes. Here, we take advantage of the facts that U(x, 0, y, z)

does not enter into the differential equations that govern the other basis functions, and it can

always be written algebraically in terms of them (see eqs. (A.15), (A.17) and (A.18) of ref. [5]).

Therefore, when the second argument of a U function vanishes, the result obtained for it from the

Runge-Kutta running is irrelevant; it is simply replaced by the algebraic result before it is returned

by the program, eliminating the roundoff error problem.

In most cases for which double poles in the coefficient functions of the derivative of the master

integral cannot be eliminated, it can be evaluated in terms of polylogarithms, so the Runge-Kutta

technique is not needed anyway. A special case in which this does not occur is M(x, y, z, u, v) for

v = (
√
x+

√
y)2; then d(sM)/ds in ref. [4] has coefficients with double poles at s0 = [

√
x(u− y) +

√
y(z − x)]/

√
v. However, here we can use the identity:

0 =
√
x[U(z, x, y, v) − T (x, u, v)] +

√
y[U(u, y, x, v) − T (y, z, v)]

+
√
v[T (v, u, x) + T (v, y, z) − 1] + [A(v)/

√
v −A(x)/

√
x−√

y]B(y, u)

+[A(v)/
√
v −A(y)/

√
y −

√
x]B(x, z), (3.19)

valid in general for v = (
√
x +

√
y)2. When the right side of equation (3.19) is multiplied by

[
√
z(u − y) +

√
u(z − x)]/v(s − s0)

2 and added to the expression for d(sM)/ds from ref. [4], the

result generically has no double poles in s. That is the form used by the program in this special

case (and others related by permutations of the masses).

A non-generic sub-case of the preceding, for which double poles in the coefficient functions of

d(sM)/ds are not eliminated, is M(0, y, z, u, y) with y = (
√
z ± √

u)2. Because the coefficients

involve double poles at s = z, there is some loss of accuracy at, and very near, that threshold.

Fortunately, there is no good reason why a relation like y = (
√
z ± √

u)2 should hold exactly in

a quantum field theory, unless a symmetry makes y or z or u equal to 0, and in each of these

cases the master integral and all of its subordinates are given in terms of polylogarithms. More

generally, we have checked that the coefficients in the derivatives as implemented in TSIL always

have only simple poles, except in “unnatural” cases of this type (where no symmetry of a quantum
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field theory can cause the necessary coincidence), or when the integrals are already analytically

computed.

The measures detailed above are generally sufficient to give good numerical accuracy near

thresholds and pseudo-thresholds (except in the unnatural coincidence case just mentioned) without

need for interpolation techniques or special expansions.

4 Description of the program

TSIL is a library of functions written in C, which can be (statically) linked from C, C++, or Fortran

code.† In addition to the main evaluation functions, it contains a variety of routines for I/O and

other utilities. A complete list of functions in the user API is given in Appendix C.

The principal data object in the code is a C struct with type name TSIL DATA that contains

values of the parameters x, y, z, u, v and Q2 as well as the 15 basis functions of types B, S, T , U , M .

Each integral function is itself a struct containing its value, arguments, and various unchanging

coefficients used in computing its derivative. These coefficients are functions of x, y, z, u, v and are

computed when the parameter values are set. In addition, each basis function contains a set of

pointers to the other functions needed in evaluating its derivative. Also contained in the data struct

are values of the integrals T , V , and S, T, U, and V. Definitions of all datatypes are contained in

the header file tsil.h, which must be included in all application programs.

In any program that calls TSIL functions requiring Runge-Kutta evaluation, at least one of

these high-level data objects must be declared:

TSIL DATA foo;

(More than one such object, and arrays of such objects, are allowed. See subsection 5.3 for an

example.) Users can of course access the items in the struct directly, though it is recommended

that the provided user interface routines be used. These allow one to extract values of individual

functions (or all of them), set the values of the external parameters, and so on.

The size of the basic datatypes used for floating point values is controlled by the user (at compile

time) with the choice of compiler flag -DTSIL SIZE LONG or -DTSIL SIZE DOUBLE. Then the type

TSIL REAL is accordingly synonymous with long double or double, while the type TSIL COMPLEX

is synonymous with long double complex or double complex. The recommended default size is

long double on systems where it is available. For most physics applications (taking into account

the natural suppression of two-loop effects), double should easily give sufficient accuracy. However,

the use of long double provides a nice safety margin, and execution times are typically short (of

order tenths or hundredths of a second on a modern workstation for generic inputs) in any case.

Generally, long double data (typically with 63 or more bits of relative precision) gives results with

relative accuracies better than 10−10 for generic cases, but sometimes somewhat worse in cases with

large mass hierarchies, and in some particularly difficult cases significantly worse. [The function

†A wrapper routine is included that provides the interface to Fortran; see section 5.5 below.
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V (x, y, z, u) for very small but non-zero y can be particularly sensitive to roundoff errors, since

the individual terms in its evaluation are proportional to 1/y and yet it is only logarithmically

divergent as y → 0.] The user should consider modifying the default parameters of the program if

significant sensitivity to parameters is expected (or observed), or if speed is an overriding concern.

In a typical application the user will initialize the data object and set values for the external

parameters x, y, z, u, v,Q2 by calling the function TSIL SetParameters. (Parameter values may

be changed in a data object with subsequent calls to this function.) Then the basis integrals

are evaluated at any desired value of s by calling the master evaluation function TSIL Evaluate.

Additional calls to TSIL Evaluate can be used to re-compute the basis functions for other values

of s.

TSIL Evaluate first decides whether the case at hand is known analytically; if so, the basis func-

tions are computed directly. If not, numerical integration is required. In this case TSIL Evaluate

begins by rescaling all dimensionful quantities by the largest of x, y, z, u, v, |s|, so that all parame-

ters are rendered dimensionless. It then locates all thresholds and pseudo-thresholds and decides

whether special handling is needed, that is, if one of these special points is near s = 0 or the

final value of s. The nearness criterion is controlled by a constant THRESH CUTOFF, defined in

tsil params.h. If s = 0 is a threshold (or there is a threshold very near s = 0), evaluation pro-

ceeds as described above by making the change of integration variable (3.7). If the final value of s

is at or near a threshold, the change of variable (3.8) is enabled for the final leg of the integration

contour.

Next, TSIL Evaluate checks to see if the final value of s is smaller than the smallest non-zero

threshold or pseudo-threshold; if so, then integration proceeds directly along the real s axis. If not,

the generic displaced integration contour (fig. 2) is used. In cases where the final destination s is

near a threshold or pseudo-threshold, the 5-stage Runge-Kutta routine described by eqs. (3.15)–

(3.18) is used for the very last step of the integration, to avoid evaluation of any derivatives at the

endpoint.

After the Runge-Kutta integration, the program checks to see if this was a case with uncanceled

double pole terms in the derivatives of the U functions, due to the second argument vanishing. If

so, these values are corrected. (Recall that in such cases the incorrect values obtained by the

Runge-Kutta integration have no effect on other basis functions.) The program also replaces any

subordinate integrals (B, S, T , U) that can be computed in terms of polylogarithms by their

analytical values. Finally, the program computes the values of all T and V functions, and the

“bold” variants of all functions defined in section 2, using eqs. (2.35)–(2.39).

The function TSIL Evaluate returns 1 (TRUE) for successful execution or 0 (FALSE) for error

execution. A warning message is printed if the external parameters correspond to the unnatural

threshold case discussed at the end of section 3. The data object further contains a status parameter,

accessible via the function TSIL GetStatus, which indicates how the master integral evaluation was

performed: either analytic, numerical integration along real axis, or numerical integration along

the contour of fig. 2.
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The standard output function is TSIL PrintData, which prints all function values on stdout.

An alternate format, designed so that captured output can serve as valid input files for Mathematica,

is given by TSIL PrintDataM. Additional utilities allow the user to extract individual basis functions

or sets of functions to arrays. Note that warning and error messages appear on stderr so they

may be redirected by the shell and examined separately.

Along with the size of intrinsic datatypes, the parameters associated with the numerical in-

tegration adaptive step-size control exert the main influences on execution speed and accuracy.‡

They are realized as members of the TSIL DATA struct, with names:

• precisionGoal: This is δP in eq. (3.14). (We use a safety factor S = 0.9.) If the maximum

estimated error for any dependent variable exceeds δP multiplied by the increment of that

variable for that step, and also exceeds the relative precision of the computer arithmetic times

the absolute value of that variable, then the step is retried with a smaller step size, unless the

step size would become smaller than specified below. Also, after a successful step, the size for

the next step is chosen according to eq. (3.14), unless it would exceed the amount specified

below. (Defaults: 10−12 for long double, 5× 10−11 for double.)

• nStepsStart: For each leg of the contour, the initial step size is chosen so that there would

be this many steps if the step size did not change. (Default: 500)

• nStepsMin: The maximum allowed step size on a leg of the contour with dimensionless

(rescaled) independent variable length L is given by L/nStepsMin. (Default: 100)

• nStepsMaxCon, nStepsMaxVar: The minimum allowed step size on a leg of the contour with

dimensionless independent variable length L is given by

L/(nStepsMaxCon + L*nStepsMaxVar). (Defaults: 10000, 10000)

The step size is not allowed to increase by more than a factor of 1.5 or decrease by more than a factor

of 2 after each step or attempted step. Note that by setting precisionGoal to 0, one can arrange

that the total number of steps on each leg tends to nStepsMaxCon + L*nStepsMaxVar. If instead

one sets precisionGoal to a very large number, the number of steps will tend to nStepsMin. The

default values have been found to give good results for a wide variety of different choices of input

parameters, for the integration variables used in the program.

In addition to the evaluation for generic parameters described above, TSIL provides functions

for direct analytical evaluation of the vacuum integrals A(x) and I(x, y, z), the one-loop integral

B(x, y), as well as A(x′), B(x′, y), ∂B(x, y)/∂s, Aǫ(x), Bǫ(x, y), I(x
′, y, z), I(x′′, y, z), I(x′, y′, z),

I(x′′′, y, z), and all S, T , T , U , V , M functions for which results in terms of polylogarithms are

available in the literature.

‡These are always set, by TSIL SetParameters, to be equal to the values specified at compile time in the file
tsil params.h. However, to deal with exceptional situations, they can optionally be reset at run time with the
function TSIL ResetStepSizeParams, after calling TSIL SetParameters and before calling TSIL Evaluate.
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5 How to use the program

5.1 Building TSIL

Complete instructions for building the library are provided with the distribution. Typically the user

edits the Makefile to choose the desired data size and set appropriate optimization flags for the

compiler. The command make then produces the static archive libtsil.a, which may be placed

in any convenient directory <dir>. The user then typically links to this library by passing the flags

-L<dir> -ltsil -lm -DTSIL SIZE <size>

to the linker, where the same flag -DTSIL SIZE <size> was used in the Makefile when compiling

libtsil.a. The header file tsil.h must be included in any source file that makes use of the TSIL

routines or data structures.

The command make also produces an executable tsil, which takes as command-line arguments

x, y, z, u, v, s,Q2 and prints out the values of all integral functions together with timing and other in-

formation. Also included with the package is a test program testprog.c (with executable tsil.tst

produced by make) and a set of 320 files containing comprehensive test data. These include cases

representing all known analytic results as well as cases requiring integration that have thresholds

and pseudo-thresholds at s = 0 and at the final s. Users should run this test suite after building the

library to insure that accurate results are obtained. The test program uses pass/fail/warn criteria

that are controlled by macros TSIL PASS and TSIL WARN in tsil testparams.h. The first sets the

maximum relative error allowed for the test to pass; the second sets a lower error threshold below

which the test is deemed to fail. A relative error between these two values results in a warning.

5.2 Essential functionality

In the simplest application of TSIL, the parameters x, y, z, u, v ≥ 0 and Q2 > 0 will be set using

TSIL SetParameters, the integrals for real s evaluated using TSIL Evaluate, and the results ex-

tracted by the calling program with the command TSIL GetFunction. The code for this might

look like:

TSIL SetParameters (&foo, x, y, z, u, v, qq);

TSIL Evaluate (&foo, s);

integral1 = TSIL GetFunction (&foo, <string1>);

integral2 = TSIL GetFunction (&foo, <string2>);

...

where foo has type TSIL DATA, and x,y,z,u,v,s,qq all have type TSIL REAL, and integral1,

integral2, . . . have type TSIL COMPLEX, and <string1>, <string2>, . . . can each be one of

"M", "Uzxyv", "Uuyxv", "Uxzuv", "Uyuzv", "Tvyz",

"Tuxv", "Tyzv", "Txuv", "Tzyv", "Tvxu", "Svyz", "Suxv",
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according to which of the integrals in eq. (2.40) is desired. In addition, permutations of the above,

matching the symmetries of the basis functions, are permitted. Thus, for example, one can access

U(z, x, y, v) by specifying either "Uzxyv" or "Uzxvy" in a call to TSIL GetFunction, since the U

functions are symmetric under interchange of their last two arguments. Likewise, any of "Suxv",

"Sxuv", "Suvx", "Svux", "Sxvu", or "Svxu" will return the function S(u, x, v) (symmetric under

interchange of any of its arguments), etc.

Identifier strings can also be one of

"Vzxyv", "Vuyxv", "Vxzuv", "Vyuzv", "Bxz", "Byu",

(and allowed permutations thereof) to access the functions V and the one-loop B functions. Ex-

amples are given in subsection 5.3. The functions S, T, U and V can be accessed in a similar way,

e.g.:

integral3 = TSIL GetBoldFunction (&foo, <string3>, n);

would return the coefficient of 1/ǫn (for n = 0, 1, or 2) in the bold-faced function corresponding to

an appropriate <string3> from the list above.

All integrals that are analytically known in terms of polylogarithms can also be evaluated

directly, without TSIL SetParameters or TSIL Evaluate or TSIL GetFunction. For example,

TSIL Manalytic (x,y,z,u,v,s,&result);

will return the int value 1 and set the variable result equal to M(x, y, z, u, v) for the appropriate

s if it is analytically available, and otherwise will return 0. Here x,y,z,u,v are of type TSIL REAL,

and s, result must be of type TSIL COMPLEX. The functions TSIL Sanalytic, TSIL Tanalytic,

TSIL Tbaranalytic, TSIL Uanalytic, and TSIL Vanalytic have analogous behavior, except that

they carry an additional argument qq of type TSIL REAL for the renormalization scale squared Q2.

For example,

TSIL Uanalytic (x,y,z,u,s,qq,&result)

will return the int value 1 and set the variable result equal to U(x, y, z, u) for the appropriate

s and Q2, if it is analytically available, and otherwise will return 0. The other analytic functions

assign without pointers, for example

result = TSIL Bp (x,y,s,qq);

will set result equal to B(x′, y) computed analytically for the appropriate s and Q2. Some exam-

ples are given in the next subsection, and a complete list of the TSIL user API is given in Appendix

6 and the program documentation and header files.

In some applications, it could be that rather than a master integral M and all of its subordinates,

one may only need integral functions corresponding to S, T, U or only S, T . Those cases can be

evaluated simply by choosing any convenient numbers for the irrelevant squared-mass arguments.
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However, this is clearly not optimally efficient. In version 1.1 of TSIL, we have added the capability

to only compute the integrals in the S, T, U system, or only those in the S, T system. This has been

accomplished by adding functions TSIL SetParametersSTU and TSIL SetParametersST, each of

which sets appropriate subsets of the squared mass parameters. A subsequent call of the function

TSIL Evaluate will only evaluate the relevant subset of integral functions. So, the user code might

include for example:

TSIL SetParametersSTU (&foo, x, z, u, v, qq);

TSIL Evaluate (&foo, s);

integral1 = TSIL GetFunction (&foo, <string1>);

integral2 = TSIL GetFunction (&foo, <string2>);

...

where <string1>, <string2>, . . . can each be one of

"Uxzuv", "Tuxv", "Txuv", "Tvxu", "Suxv", "Bxz".

Or, if U(x, z, u, v) is not needed, then one can use TSIL SetParametersST (&foo, x, u, v, qq);

instead. For generic cases, the S, T, U evaluation is a factor of 4 or 5 faster than full evaluation, and

the S, T case gains a further 20% in evaluation speed. Note that the choice of which integral func-

tions are evaluated by TSIL Evaluate is controlled by the most recent call of TSIL SetParameters

or TSIL SetParametersSTU or TSIL SetParametersST for the relevant data struct. Also, if S, T, U

or S, T evaluation is used, then TSIL GetData and TSIL GetBoldData will generate an error mes-

sage; only TSIL GetFunction and TSIL GetBoldFunction should be used to extract the results in

those cases. Note that in subset evaluation cases where there is only a single function of a given

type (U , V , S, or B), the specification string may be abbreviated to only the first character, e.g.

“U” in place of “Uxzuv” above.

In version 1.2 of TSIL, we have introduced a new struct type TSIL RESULT, which contains

only the subset of the information found in TSIL DATA that is essential in typical applications.

This information consists of: the squared masses x, y, z, u, v, the external momentum invariant

s, the renormalization scale Q2 and the integral results listed in eq. (2.40) as well as T (v, y, z),

T (u, x, v), T (y, z, v), T (z, y, v), B(x, z) and B(y, u). The TSIL RESULT struct is useful for more

efficient storage of results and for performing permutations of the squared masses. The new function

TSIL CopyResult can be used to copy data from a full TSIL DATA struct to a TSIL RESULT struct.

(This should be done only after TSIL Evaluate has been called on the TSIL DATA struct.) The

new function TSIL PermuteResult can then be used to copy the data from one TSIL RESULT struct

to another, with the option of permuting the squared masses according to either (x, z) ↔ (y, u),

or (x, y) ↔ (z, u), or (x, y) ↔ (u, z), by using the symmetries of the master topology rather than

needlessly redoing the integrals. Such permutations occur often in practical applications such as the

supersymmetric Standard Model. The elements of the TSIL DATA and TSIL RESULT struct types

can be found in the file tsil.h.
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5.3 Sample applications

As a sample application of TSIL, let us calculate the two-loop self energy and pole squared mass

for a single scalar field with interaction Lagrangian

L = −1

2
m2φ2 − g

3!
φ3 − λ

4!
φ4 . (5.1)

Here m2, g and λ are the tree-level renormalized parameters. The self-energy

Π(s) =
1

16π2
Π(1)(s) +

1

(16π2)2
Π(2)(s) + · · · (5.2)

is a function of s = −p2, with pµ the external momentum, as well as the parameters m2, g and λ.

Note that the metric is either of signature (−+++) or Euclidean. Furthermore, s must be taken

to be real with an infinitesimal positive imaginary part to properly resolve the branch cuts.

The pole squared mass

s = M2 − iΓM (5.3)

is defined as the position of the pole, with non-positive imaginary part, in the propagator obtained

from the perturbative Taylor expansion of the self-energy about the tree-level squared mass.† (Note

that in the present case the width Γ = 0 identically.) This leads to the following iterative scheme

for computing the two-loop pole squared mass. First, the one-loop approximation s(1) to the pole

squared mass is obtained as

s(1) = m2 +
1

16π2
Π(1)(m2) . (5.4)

Then, defining

Π̃ =
1

16π2

[

Π(1)(m2) + (s(1) −m2)Π(1)′(m2)
]

+
1

(16π2)2
Π(2)(m2) , (5.5)

in which the prime indicates a derivative with respect to s, we obtain the two-loop approximation

to the pole squared mass as

s(2) = m2 + Π̃ . (5.6)

For the scalar theory described by eq. (5.1) we find, including the MS counterterms:

Π(1)(s) =
1

2
λA(x)− 1

2
g2B(x, x) (5.7)

Π(2)(s) = −1

2
g4M(x, x, x, x, x) − 1

2
g4V (x, x, x, x) + g3U(x, x, x, x)

−1

6
λ2S(x, x, x) +

1

4
λg2B(x, x)B(x, x) +

1

4
λ2A(x) [A(x)/x+ 1] (5.8)

−1

2
λg2A(x)B(x′, x)− 1

4
λg2I(x′, x, x) ,

†In a theory with gauge fields the self-energy is gauge-dependent, but the pole squared mass defined in this way
is properly gauge invariant.
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where x = m2, and

Π(1)′(s) = −1

2
g2

∂

∂s
B(x, x) . (5.9)

Note that both Π(1)′ and Π(2) have (1− s/4x)−1/2 singularities at the threshold s = 4x, though this

is not manifest in the above formulas. The TSIL code handles such true singularities by returning

a value that is interpreted and displayed as the string ComplexInfinity.

Below is a sample C code that uses TSIL to calculate the pole squared mass for parameter values

m2, g, λ and Q2 obtained as command-line inputs in that order. It first computes the required

basis functions at s = m2, then assembles Π(1)(m2), Π(2)(m2) and Π(1)′(m2), and finally outputs

the pole squared mass:

/* === scalarpole.c ===

*

* Command-line arguments are:

* scalar mass squared = x,

* cubic coupling = g,

* quartic coupling = lambda,

* renormalization scale squared = qq.

*

* Run as, for example: ./spole 1 2 3 1

*/

#include <stdio.h>

#include "tsil.h" /* Required TSIL header file */

#define PI 4.0L*TSIL_ATAN(1.0L) /* Uses arctan function defined in tsil.h */

int main (int argc, char *argv[])

{

TSIL_DATA result; /* Top-level TSIL data object */

TSIL_REAL qq; /* Ensures correct basic type; see also TSIL_COMPLEX */

TSIL_REAL x, g, lambda;

TSIL_COMPLEX pi1, pi1prime, pi2, s1, s2;

TSIL_REAL factor = 1.0L/(16.0L*PI*PI);

/* If incorrect number of args, print message on stderr and exit: */

if (argc != 5)

TSIL_Error("main", "Expected 4 arguments: m^2, g, lambda, and Q^2", 1);

/* Note cast to appropriate floating-point type for safety */

x = (TSIL_REAL) strtold(argv[1], (char **) NULL);

g = (TSIL_REAL) strtold(argv[2], (char **) NULL);

lambda = (TSIL_REAL) strtold(argv[3], (char **) NULL);

qq = (TSIL_REAL) strtold(argv[4], (char **) NULL);

/* All loop integrals have a common squared-mass argument x: */

TSIL_SetParameters (&result, x, x, x, x, x, qq);

/* For the pole mass calculation, evaluate two-loop integrals at s = x: */

TSIL_Evaluate (&result, x);
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Figure 3: Feynman diagram topologies for some two-loop corrections to the neutral Higgs scalar
boson self-energies in supersymmetry.

/* Assemble one- and two-loop mass squared results: */

pi1 = 0.5L*lambda*TSIL_A(x,qq) - 0.5L*g*g*TSIL_B(x,x,x,qq);

pi1prime = -0.5L*g*g*TSIL_dBds(x, x, x, qq);

pi2 = - 0.5L*g*g*g*g*TSIL_GetFunction(&result, "M")

- 0.5L*g*g*g*g*TSIL_GetFunction(&result, "Vzxyv")

+ g*g*g*TSIL_GetFunction(&result, "Uzxyv")

- (1.0L/6.0L)*lambda*lambda*TSIL_GetFunction(&result, "Svyz")

+ 0.25L*lambda*g*g*TSIL_POW(TSIL_GetFunction(&result, "Bxz"), 2)

+ 0.25L*lambda*lambda*TSIL_A(x,qq)*(TSIL_A(x,qq)/x + 1.0L)

- 0.5L*lambda*g*g*TSIL_A(x,qq)*TSIL_Bp(x, x, x, qq)

- 0.25L*lambda*g*g*TSIL_I2p(x,x,x,qq);

s1 = x + factor*pi1;

s2 = x + factor*pi1 + factor*factor*(pi2 + pi1*pi1prime);

printf("Tree-level squared mass: %lf\n", (double) x);

printf("One-loop pole squared mass: %lf\n", (double) s1);

printf("Two-loop pole squared mass: %lf\n", (double) s2);

return 0;

}

Note the use of TSIL A, TSIL I2p, TSIL B, TSIL Bp, and TSIL dBds to evaluate the functions

A(x), I(x′, x, x), B(x, x), B(x′, x), and ∂B(x, x)/∂s, respectively. [In the evaluation of pi2, we

arbitrarily chose to use TSIL GetFunction(&result, "Bxz") where TSIL B could have been used.]

The compile command for this program to produce the executable spole would typically be

cc -o spole scalarpole.c -L<dir> -ltsil -lm -DTSIL SIZE <size>

as discussed in subsection 5.1.

Other situations can be treated with appropriate generalizations. For example, in the Minimal

Supersymmetric Standard Model correction to the neutral Higgs scalar boson self-energies [61],

there are graphs with the topology shown in fig. 3 involving the top quark t, the top squarks t̃n

for n = 1, 2, and the gluino g̃. All of the necessary one-loop and two-loop basis integrals for these

diagram topologies can be computed in one fell swoop with:

TSIL DATA result[2][2]; /* Declare an array of TSIL DATA structs */
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TSIL REAL mt2, mstop2[2], mgluino2; /* Squared masses of top, stops, gluino */

TSIL REAL s;

int i,j;

...

for (i=0; i<2; i++) {
for (j=0; j<i; j++) {
TSIL SetParameters (&(result[i][j]),mstop2[i],mt2,mstop2[j],mt2,mgluino2,qq);

TSIL Evaluate (&(result[i][j]),s);

}
}

The index of mstop2[] in the code is one less than the conventional top squark mass eigenstate

label, because arrays start at index 0 in C. Note that the evaluation for j = 1, i = 0 would be

redundant by symmetry with that for j = 0, i = 1, and so is not performed here. Note also that

the subordinate integrals of topology S, T , and U are needed for the calculation of the self-energy

and the pole mass, even though there are no Feynman diagrams with the corresponding topologies

since there are no four-particle couplings involving fermions. The necessary two-loop integrals can

then be extracted by, for example:

value = TSIL GetFunction(&(result[0][0]), "M"); for M(m2
t̃1
,m2

t ,m
2
t̃1
,m2

t ,mg̃),

value = TSIL GetFunction(&(result[0][0]), "Vuyxv"); for V (m2
t ,m

2
t ,m

2
t̃1
,mg̃),

value = TSIL GetFunction(&(result[1][0]), "Vzxyv"); for V (m2
t̃1
,m2

t̃2
,m2

t ,mg̃),

value = TSIL GetFunction(&(result[1][0]), "Vxzuv"); for V (m2
t̃2
,m2

t̃1
,m2

t ,mg̃),

value = TSIL GetFunction(&(result[0][0]), "Txuv"); for T (m2
t̃1
,m2

t ,mg̃),

etc.

5.4 Using TSIL with C++

TSIL functions can be called from C++ code using libtsil.a. The header file tsil cpp.h should

be included in any C++ source files that make use of TSIL functions. This file is equivalent to the

usual tsil.h, but with additional definitions to streamline interoperation with C++.

In particular, tsil cpp.h provides wrappers for TSIL functions that insure proper handling of

complex values, which are of generic type Complex in C and std::complex<> in C++. The relevant

standards guarantee that pointers to these types will be interpreted correctly in any context, and

the wrappers insure that complex arguments and return values are always passed between C and

C++ in this way.

What this means for the user is that the TSIL functions all have C++-specific versions that can

be called with C++ types as arguments and will return C++ types. The names of these are the

same as the corresponding TSIL functions, with a trailing underscore. Thus the C function

TSIL GetFunction (...)

22



becomes

TSIL GetFunction (...)

when called from C++, etc. All functions in the user API have been supplied with such wrappers,

even though not all functions really need them; this is so that users need not remember which

functions have special names.

See the TSIL documentation file README.txt for additional details on using TSIL with C++.

5.5 Using TSIL with FORTRAN

TSIL functions can be called from Fortran programs, and utilities for this are included with the

package. Basic functionality is provided by a “wrapper” function tsilfevaluate, which is called

as a subroutine from a Fortran program. This subroutine implements the most general TSIL

calculation: it takes as arguments x, y, z, u, v,Q2, s and returns the values of all basis functions,

including T , V , and “bold” functions.

The results are returned to the calling program in a COMMON block, which corresponds to a special

C struct used in tsilfevaluate. This COMMON block contains a number of pre-defined arrays that

hold the various function values. Definitions of the COMMON block and subsidiary arrays are given

in a header file that users include in their Fortran programs (tsil fort.inc). In addition, this

header file defines a set of integer variables that allow items in the COMMON block to be referred to

by name.

A Fortran program fragment that uses these utilities is shown below:

PROGRAM ftest

c Includes array and COMMON definitions:

INCLUDE ’tsil_fort.inc’

c (Code setting values of x,y,z,u,v,qq,s not shown)

...

c Evaluate basis integrals:

CALL tsilfevaluate(x,y,z,u,v,qq,s)

c Print a representative value:

PRINT *, U(xzuv)

...

The provided wrapper code can serve as a model for users wishing to write their own interface

routines with additional functionality. The TSIL documentation contains a detailed discussion of

the issues that arise in using TSIL with Fortran.

6 Outlook

The TSIL library is intended to provide a convenient all-purpose solution to the problem of nu-

merical evaluation of two-loop self-energy integrals in high-energy physics. The functions provided

should work for arbitrary input parameters, without relying on special mass hierarchies or other
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simplifications that can arise in special cases. The library does take advantage of simplifications

when they allow evaluation in terms of polylogarithms.

The library is organized around the calculation of the basis integrals to which all other self-

energy contributions can be reduced by known algorithms. It is therefore the responsibility of the

user to perform the non-trivial calculations necessary to assemble the basis functions into physical

observables. This involves the reduction of the Feynman diagrams to the basis integrals and the

inclusion of counterterms, tasks that can always be automated using purely symbolic computer

algebra manipulations or even performed by hand in favorable situations. We believe that keeping

these separate from the problem of numerical evaluation is advantageous, and that the modular

nature of this approach will afford the flexibility to deal with the surprises that hopefully await us

as we explore physics at the TeV scale.

Appendix A: Comparison of conventions with other sources

In this Appendix, we list the correspondence between our notation for the loop integrals and those

found in several other references. In the following, the functions as defined in this paper and in

refs. [4],[5] always appear on the left-hand side, and equivalent notations for them in other papers

appear on the right.

The definition of the master integral in ref. [16] is given by:

M(x, y, z, u, v) = −I(s)/s, (A.1)

with m2
1,m

2
2,m

2
3,m

2
4,m

2
5 = x, z, v, y, u, and the integral on the right-hand side defined in 4 dimen-

sions.

The notation used in refs. [3, 9, 18, 45, 47] is:

A(x) = −A0(x) (A.2)

B(x, y) = B0(s;x, y) (A.3)

I(x, y, z) = −T135(x, y, z) (A.4)

S(x, y, z) = −T234(s;x, y, z) (A.5)

T(x, y, z) = T2234(s;x, x, y, z) (A.6)

U(x, y, z, u) = T1234(s; y, x, z, u) (A.7)

V(x, y, z, u) = −T11234(s; y, y, x, z, u) (A.8)

M(x, y, z, u, v) = −T12345(s;x, z, v, u, y). (A.9)

Ref. [46] used the same notation, with the exception that S(x, y, z) = −T123(s;x, y, z) there.

The notation in ref. [1] is:

A(x) = iaT
(d)
1 with m2

1 = x, (A.10)

B(x, y) = −iaG
(d)
11 (s) with m2

1,m
2
2 = x, y, (A.11)
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I(x, y, z) = a2J
(d)
111(0) with m2

1,m
2
2,m

2
3 = x, y, z, (A.12)

S(x, y, z) = a2J
(d)
111(s) with m2

1,m
2
2,m

2
3 = x, y, z, (A.13)

T(x, y, z) = −a2J
(d)
211(s) with m2

1,m
2
2,m

2
3 = x, y, z, (A.14)

U(x, y, z, u) = −a2V
(d)
1111(s) with m2

1,m
2
2,m

2
3,m

2
4 = u, x, z, y, (A.15)

V(x, y, z, u) = a2V
(d)
1112(s) with m2

1,m
2
2,m

2
3,m

2
4 = u, x, z, y, (A.16)

M(x, y, z, u, v) = a2F
(d)
11111(s) with m2

1,m
2
2,m

2
3,m

2
4,m

2
5 = x, y, z, u, v, (A.17)

and the closely related notation of ref. [2] is

A(x) = iaTAI[d,s,{{1,√x}}], (A.18)

B(x, y) = −iaTBI[d,s,{{1,√x}, {1,√y}}] (A.19)

I(x, y, z) = a2TJI[d,0,{{1,√x}, {1,√y}, {1,√z}}] (A.20)

S(x, y, z) = a2TJI[d,s,{{1,√x}, {1,√y}, {1,√z}}] (A.21)

T(x, y, z) = −a2TJI[d,s,{{2,√x}, {1,√y}, {1,√z}}] (A.22)

U(x, y, z, u) = −a2TVI[d,s,{{1,√u}, {1,√x}, {1,√z}, {1,√y}}] (A.23)

V(x, y, z, u) = a2TVI[d,s,{{1,√u}, {1,√x}, {1,√z}, {2,√y}}] (A.24)

M(x, y, z, u, v) = a2TFI[d,s,{{1,√x}, {1,√y}, {1,√z}, {1,√u}, {1,√v}}] (A.25)

where a = (4πµ2)2−d/2.

The notation of [32, 53, 55, 56, 57] (ref. [54] used a slightly different normalization) is:

A(x) = bT (d, x) (A.26)

B(x, y) = bS(d, x, y,−s) (A.27)

I(x, y, z) = b2V (d, x, y, z) (A.28)

S(x, y, z) = b2F0(d, x, y, z,−s) (A.29)

T(x, y, z) = b2F1(d, x, y, z,−s) = b2F2(d, z, x, y,−s) = b2F3(d, y, z, x,−s) (A.30)

U(x, y, z, u) = b2F4(d, x, u, y, z,−s), (A.31)

where b = 4µ4−d.

The notation of [50] is:

S(x, y, z) = c2S111 withm2
1,m

2
2,m

2
3 = x, y, z, (A.32)

U(x, y, z, u) = c2S121 withm2
1,m

2
2,m

2
3,m

2
4 = z, u, y, x, (A.33)

M(x, y, z, u, v) = c2S221 withm2
1,m

2
2,m

2
3,m

2
4,m

2
5 = x, z, v, y, u, (A.34)

with c = (2π)d−4.

Appendix B: Analytic expressions for some special cases

In this Appendix, we present some analytic formulas for some important two-loop basis integrals

special cases, two of which do not seem to have appeared before in the literature, and others that
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are equivalent to known results.

As a generalization of the integral M(0, 0, x, x, 0) computed in ref. [16], we find that for x ≥ y:

M(0, 0, x, y, 0) =
[

3Li3(rx) + 3Li3(ry)− 3Li3(ry/rx)− 3Li3(yry/xrx)

+3Li3(y/x)− 3ζ(3) + [ln(ry)− ln(rx) + 2 ln(y/x)]Li2(yry/xrx)

+[ln(ry)− ln(rx)− 2 ln(y/x)]Li2(y/x) + [ln(ry)− 3 ln(rx)]Li2(rx)

+[ln(rx)− 3 ln(ry)]Li2(ry) + 3[ln(ry)− ln(rx)]Li2(ry/rx)

+[ln(rx)− ln(ry)][ln(rx)− ln(ry) + ln(x/y)] ln(1− y/x)

− ln3(rx) + 2 ln2(rx) ln(ry)− ln(rx) ln
2(ry)− ln(rx) ln(ry) ln(1− rx)

+ ln(rx) ln(ry) ln(y/x) − ln(rx) ln(y/x)[ln(rx) + ln(y/x)]/2

−ζ(2)[3 ln(rx) + ln(ry)]
]

/s (B.1)

where rx = 1− s/x and ry = 1− s/y are each given an infinitesimal negative imaginary part. The

result for x < y is obtained by interchanging the squared masses.

Generalizing the result M(0, x, x, 0, x)|s=x found in ref. [16], we obtain threshold cases:

M(0, y, y, 0, x)|s=x =
[

2Li3([r − 1]/[r + 1])− 2Li3([1− r]/[r + 1])− 2Li3(r/[r + 1])

−2Li3(1− 1/r)− Li3(1/r
2)/4 + 2[ln(2r)− ln(r + 1)]Li2(r/[r + 1])

+[4 ln(r − 1)− 2 ln(2r)− 2 ln(r + 1)]Li2(1− 1/r)

+2[ln(r − 1)− ln(r + 1)][Li2([1− r]/2)− Li2([r − 1]/2r)

− ln(4r)Li2(1/r
2)/2 + ln2(r)[3 ln(r − 1)− ln(r + 1)− 6 ln 2]/2

+ ln(r)[2 ln(r + 1) ln(2[r − 1])− ln2(r − 1)− 6ζ(2)] − (4/3) ln3(r)

−(2/3) ln3(r + 1) + ln 2 ln2(r + 1) + ζ(3)/2 + 6ζ(2) ln(1 + r)
]

/x, (B.2)

M(0, x, y, 0, y)|s=x =
[

2Li3([
√
r − 1]/[

√
r + 1])− 2Li3([1 −

√
r]/[

√
r + 1])

+2Li3(1− r)− 2Li3([r − 1]/r)− 3ζ(3)/2

+[ln(r)− 2 ln(r − 1)]Li2(1− r)− [ln2(r − 1) ln(r)]/2

+[ln3(r)]/3 − 2ζ(2) ln(r) + 6ζ(2) ln(1 +
√
r)
]

/x, (B.3)

where r = y/x is given an infinitesimal negative imaginary part to get the correct branches.

Eq. (B.3) is equivalent, by use of the recurrence relations of [1], to results already obtained in

[36, 37].

We also note the following threshold and pseudo-threshold values (equivalent to results obtained

in [38]; see also [39]):

U(x, 0, y, y)|s=x = 11/2 − 3lnx+ lnxlny − (lny)2/2 + (1 + y/x)[ζ(2) − Li2(1− x/y)]

−4r{Li2([1− r]/[1 + r])− Li2([r − 1]/[r + 1]) + 3ζ(2)/2} (B.4)

where r =
√

y/x, and

U(y, 0, y, x)|s=x = 11/2 − 2lnx− lny + (lny)2/2− 2ζ(2)(1 + y/x)

+(lnx− 1 + y/x[1− lny]) ln(1− x/y − iε) + (1 + 2y/x)Li2(1− x/y). (B.5)
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Appendix C: The TSIL Application Programmer Interface

This Appendix lists the functions in the TSIL package, and their basic functionality. Complete

details may be found in the TSIL documentation and header files.

Basic evaluation functions:

TSIL SetParameters Sets parameters x, y, z, u, v,Q2 and selects evaluation of all

integral functions

TSIL SetParametersSTU Sets parameters x, z, u, v,Q2 and selects evaluation of S, T, U

functions only. (New in v1.1 November 2006; see section 5.2.)

TSIL SetParametersST Sets parameters x, u, v,Q2 and selects evaluation of S, T

functions only. (New in v1.1 November 2006; see section 5.2.)

TSIL Evaluate Evaluate integral functions for a specified s

TSIL GetStatus Return current evaluation status

TSIL GetData Extract a set of integral function values to an array

TSIL GetBoldData Extract a set of bold integral function values to an array

TSIL GetFunction Return a single specified integral function value

TSIL GetBoldFunction Return a single specified bold integral function value

I/O related functions:

TSIL PrintStatus Print evaluation status to stdout

TSIL PrintData Print all integral function values to stdout

TSIL WriteData Write all integral function values to a file

TSIL PrintDataM As TSIL PrintData, but format is valid Mathematica input

TSIL WriteDataM As TSIL WriteData, but format is valid Mathematica input

TSIL cprintf Generic printing of values of TSIL Complex type

TSIL cprintfM As TSIL cprintf, but in Mathematica input form

TSIL Error Print a message to stderr and exit

TSIL Warn Print a warning message to stderr

TSIL WarnsOff Toggles warning messages off. (New in v1.3 June 2015.)

TSIL WarnsOn Toggles warning messages on. (New in v1.3 June 2015.)

TSIL PrintInfo Write general information on stdout

Utilities:

TSIL ResetStepSizeParams Sets new parameters used for Runge-Kutta step size control

TSIL IsInfinite Tests whether argument of type TSIL Complex is finite

TSIL DataSize Returns size of intrinsic floating point data used

TSIL PrintVersion Prints version number of TSIL

TSIL CopyResult Copies data from a TSIL DATA struct to a TSIL RESULT struct.

(New in v1.2 July 2014, see end of section 5.2.)

TSIL PermuteResult Copies the data from one TSIL RESULT struct to another, with
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the option of permuting the squared masses according to either

(x, z) ↔ (y, u), or (x, y) ↔ (z, u), or (x, y) ↔ (u, z),

or doing no permutation. (New in v1.2 July 2014, see end

of section 5.2.)

TSIL NumFuncs Returns number of basis functions of specified type. (New in

v1.3 June 2015.)

Analytic cases:

TSIL Dilog Dilogarithm function of complex argument Li2(z)

TSIL Trilog Trilogarithm function of complex argument Li3(z)

TSIL A One-loop vacuum integral A(x)

TSIL Ap One-loop vacuum integral A(x′) = ln(x) (New in v1.2 July 2014.)

TSIL Aeps One-loop vacuum integral Aǫ(x)

TSIL B One-loop self-energy integral B(x, y)

TSIL Bp B(x′, y)

TSIL dBds ∂B(x, y)/∂s

TSIL Beps One-loop self-energy integral Bǫ(x, y)

TSIL I2 Two-loop vacuum integral I(x, y, z)

TSIL I2p I(x′, y, z)

TSIL I2p2 I(x′′, y, z)

TSIL I2pp I(x′, y′, z)

TSIL I2p3 I(x′′′, y, z)

TSIL Sanalytic Analytic evaluation of S if available

TSIL Tanalytic Analytic evaluation of T if available

TSIL Tbaranalytic Analytic evaluation of T if available

TSIL Uanalytic Analytic evaluation of U if available

TSIL Vanalytic Analytic evaluation of V if available

TSIL Manalytic Analytic evaluation of M if available

Fortran interface function:

tsilfevaluate Wrapper for TSIL Evaluate, callable from Fortran
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