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Vacuum structure of two-dimensional gauge theories on the light front

Gary McCartor
Department of Physics, Southern Methodist University, Dallas, Texas 75275

David G. Robertson and Stephen S. Pinsky
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 9 December 1996!

We discuss the problem of vacuum structure in light-front field theory in the context of~111!-dimensional
gauge theories. We begin by reviewing the known light-front solution of the Schwinger model, highlighting the
issues that are relevant for reproducing theu structure of the vacuum. The most important of these are the need
to introduce degrees of freedom initialized on two different null planes, the proper incorporation of gauge field
zero modes when periodicity conditions are used to regulate the infrared, and the importance of carefully
regulating singular operator products in a gauge-invariant way. We then consider SU~2! Yang-Mills theory in
111 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge
group is actually SU~2!/Z2, which possesses nontrivial topology. In particular, there are two topological sectors
and the physical vacuum state has a structure analogous to au vacuum. We formulate the model using
periodicity conditions inx6 for infrared regulation, and consider a solution in which the gauge field zero mode
is treated as a constrained operator. We obtain the expectedZ2 vacuum structure, and verify that the discrete
vacuum angle which enters has no effect on the spectrum of the theory. We then calculate the chiral conden-
sate, which is sensitive to the vacuum structure. The result is nonzero, but inversely proportional to the
periodicity length, a situation which is familiar from the Schwinger model. The origin of this behavior is
discussed.@S0556-2821~97!00414-1#

PACS number~s!: 11.10.Kk, 11.10.Ef, 11.15.Tk

I. INTRODUCTION

Light-front quantization@1# has recently emerged as a po-
tentially powerful tool for the nonperturbative study of quan-
tum field theories@2#. The main advantage of this approach
is the apparent simplicity of the vacuum state, which leads to
major simplifications in the solution of the Hamiltonian ei-
genvalue problem. Indeed, naive arguments suggest that the
physical vacuum is trivial on the light front. In many theories
of interest, however, the structure of the vacuum plays an
important physical role, giving rise to, e.g., spontaneous
symmetry breaking, confinement, vacuum angles, etc. It is
therefore necessary to understand how these phenomena can
occur in light-front field theory.

These issues have recently been discussed in a variety of
contexts. If one regulates the infrared by imposing periodic
or antiperiodic boundary conditions on some finite interval in
x2 @3,4#, then any nontrivial vacuum structure must be con-
nected with thek150 Fourier modes of the fields.1 Studies
of model field theories have shown that certain aspects of
vacuum physics can in fact be reproduced by a careful treat-
ment of the field zero modes in this framework. For example,
it has been shown that solutions of the zero-mode constraint
equation inf111

4 theory @3# exhibit spontaneous symmetry
breaking@5–9#. In addition, certain topological features of
pure Yang-Mills theories in 111 dimensions have been suc-
cessfully reproduced@10#.

The focus of the present work is on structure of the
u-vacuum type in gauge theories. This has been discussed in

detail for the Schwinger model in@11# ~see also@12# for a
discussion in the bosonized context!, where it was shown
that in order to obtain a theory that is isomorphic to the usual
equal-time theory it is necessary to go beyond the conven-
tional light-front approach. The main complication is the
need to introduce degrees of freedom initialized along a sec-
ond null plane, specifically a surface of constantx2. In ad-
dition, it is important to properly treat the gauge field zero
modes and to carefully define singular operator products in a
gauge-invariant way.

Non-Abelian realizations of this sort of vacuum structure
are difficult to find in 111 dimensions, however, due to the
fact thatP1@SU(N)# is trivial. A model which does exhibit a
sort of u vacuum is Yang-Mills theory coupled to fermions
in the adjoint representation. Since all fields transform ac-
cording to the adjoint representation, gauge transformations
that differ by an element in the center of the gauge group
represent the same transformation and so should be identi-
fied. Thus the gauge group is actually SU(N)/ZN , which has
nontrivial topology:P1@SU(N)/ZN#5ZN . The model there-
fore possesses anN-fold vacuum degeneracy, and there is a
discrete vacuum angle analogous to theu parameter of QCD
@13,14#. In addition, forN52 there is expected to be a non-
vanishing bilinear condensate@15#.

The goal of the present work is to understand how this
structure arises in the light-front framework. As we shall see,
if proper attention is paid to the subtleties of light-front
quantization, then the expected features can all be correctly
reproduced. In particular, forN52 we shall explicitly ex-
hibit theZ2 vacuum degeneracy and find a nonzero conden-
sate. In the light-front representation the vacuum states can
be described completely, unlike in the equal-time approach.1This follows from simple kinematical considerations.

PHYSICAL REVIEW D 15 JULY 1997VOLUME 56, NUMBER 2

560556-2821/97/56~2!/1035~15!/$10.00 1035 © 1997 The American Physical Society



However, the condensate we obtain is proportional to 1/L,
where L is the periodicity length, and so vanishes in the
infinite-volume limit. This behavior is familiar from the
Schwinger model and may be traced to the infrared regulator
we employ. We shall discuss these issues further below.

Interestingly, for massless fermions the spectrum ofmas-
sive states of the adjoint model has recently been shown
to be identical to that of~111!-dimensional Yang-Mills
theory with multiple flavors of fundamental fermions@16#.
For this to be true it is necessary that the massive spectrum
be independent of the vacuum angle that enters in the con-
struction of the physical ground state. We will show this
explicitly. In fact, the only quantity which depends on the
vacuum angle is the chiral condensate, much like in the
Schwinger model.

We shall begin by reviewing the essentials of the light-
front solution of the Schwinger model presented in Refs.
@11#. This will serve to introduce the basic framework and to
highlight the issues that are central to the occurrence of non-
trivial vacuum structure in the light-front representation. We
then discuss the formulation of SU~2! gauge theory with ad-
joint fermions. We shall consider a formulation of the theory
in which the gauge field zero mode is treated as a constrained
variable; a complementary formalism, in which the vacuum
contains a dynamical zero mode content, is discussed in Ref.
@17#. We show that this model possesses degenerate vacuum
states which we calculate explicitly. The physical ground
state is a superposition of these constructed to satisfy the
cluster property. Next we compute the condensate, the ex-
pectation value ofC̄C in this state, and briefly discuss the
L dependence of the result. Finally, we touch on some unre-
solved issues and directions for future work.

II. THE SCHWINGER MODEL

The Schwinger model is electrodynamics of massless fer-
mions in 111 dimensions@18#. The present discussion will
necessarily be rather telegraphic, as our aim is mainly to
highlight the issues that will be important later. For further
details the reader is advised to consult@11#.

To begin with, let us consider a free massless fermion.
We shall employ the conventionx65(x06x1)/A2, and de-
compose the Fermi field in the usual way:

c6[
1

A2
g0g6c. ~2.1!

In 111 dimensions~only! these are the same as chiral pro-
jections, so that

c15S cR

0 D , c25S 0cL
D . ~2.2!

Now, the need to include degrees of freedom on two differ-
ent lightlike lines can be seen immediately from the equation
of motion, which takes the form

]1cR5]2cL50, ~2.3!

where]6[]/]x6. These have as their general solution

cR5 f ~x2!, cL5g~x1!, ~2.4!

wheref andg are arbitrary. Clearly, information along lines
of both constantx1 and x2 must be specified to obtain a
general solution to the Dirac equation. If in the quantum
theory we do not include degrees of freedom to represent all
of this freedom of the classical solution space, then the re-
sulting theory will be incomplete.

The proper light-front formulation of this theory involves
a pair of independent fields:cR , initialized onx150, and
cL , initialized onx250. We regulate the infrared behavior
by requiring thatcR/L satisfy antiperiodic boundary condi-
tions in 0<x7<2L.2 We can then Fourier expand the fields
on their respective initial-value surfaces:

cR~0,x2!5
1

21/4A2L (
n5 1/2

`

~bne
2 ikn

1x2
1dn

†eikn
1x2

!,

~2.5!

cL~x
1,0!5

1

21/4A2L (
n5 1/2

`

~bne
2 ikn

2x1
1dn

†eikn
2x1

!,

~2.6!

wherekn
65np/L and the sums are over odd half integers.

Throughout this paper we shall use lower-case~upper-case!
letters to denote indices that take odd half-integer~integer!
values. The canonical anticommutation relations are

$cR~0,x2!,cR
†~0,y2!%5

1

A2
d~x22y2!, ~2.7!

$cL~x
1,0!,cL

†~y1,0!%5
1

A2
d~x12y1!. ~2.8!

These are realized by the Fock algebra

$bn ,bm
† %5$dn ,dm

† %5$bn ,bm
† %5$dn ,dm

† %5dm,n ,
~2.9!

with all other anticommutators vanishing. The Fock space is
generated by applying the various creation operators to a
vacuum stateu0&.

An important feature of this construction is that the dy-
namical operatorsP6, and in fact all conserved charges, re-
ceive contributions from both parts of the initial-value sur-
face. This follows from very general considerations@20#. We
have

P65E
0

2L

dx2Q161E
0

2L

dx1Q26, ~2.10!

where the second term accounts for the energy momentum of
the left movers.

Let us now turn to the Schwinger model. The classical
Lagrangian density is

2Note that in general the initial-value surface should be chosen so
as to contain no points that are separated by timelike intervals; in
such a case the commutation relations of the fields could not in
general be knowna priori. For a detailed discussion of these issues
in the light-front context see@19#.

1036 56McCARTOR, ROBERTSON, AND PINSKY



L5
1

2
@ i c̄gm]mc2 i ~]mc̄ !gmc#2

1

4
FmnFmn2eAmJm ,

~2.11!

whereFmn5]mAn2]nAm andJm5 c̄gmc. We shall impose
periodic boundary conditions inx2 on Am , and choose the
gauge]2A

150. Note that the light-cone gaugeA150 is
not allowed in the presence of the nontrivial spatial topology
@21#. ThusA1[v, a zero mode. To simplify the notation let
us further introduceA[A2. The equations of motion then
take the form

2]2
2 A5eJ1[eJR, ~2.12!

]1]2A5eJ2[eJL, ~2.13!

~]11 ieA!cR50, ~2.14!

~]21 iev !cL50, ~2.15!

whereJR5A2cR
†cR andJ

L5A2cL
†cL .

We should perhaps elaborate somewhat on the choice of
gauge. The gauge field is chosen to be periodic inx2 but
satisfies no particular boundary condition inx1. Thus the
gauge transformation required to bring an arbitrary configu-
rationAm(x

1,x2) to one satisfying]2A
150 will in general

not be periodic inx1, and so will violate the boundary con-
dition we have imposed oncL . However, after such a trans-
formation we can apply a purelyx1-dependent gauge trans-
formation that restores the antiperiodicity ofcL at a single
value of x2, which we can choose to be the initial-value
surfacex250. This does not affect the boundary conditions
satisfied by the other fields. To be precise, therefore, we
should say that we require thatcL be antiperiodic on its
initial-value surface only; it may not remain antiperiodic as it
evolves inx2. ~Exactly what happens tocL is discovered by
solving its equation of motion.! This condition, and the con-
ditions imposed oncR andAm , are then consistent with the
gauge choice]2A

150.
Next let us discuss the definition of singular operator

products, as this is central to the issue of vacuum structure.
We define the current operators by a gauge-invariant point
splitting:

JR~0,x2![A2 lim
e2→0

FexpS 2 ieE
x

x1e2

vdx2D
3cR

†~0,x21e2!cR~0,x2!2VEVG ,
~2.16!

JL~x1,0![A2 lim
e1→0

FexpS 2 ieE
x

x1e1

Adx1D
3cL

†~x11e1,0!cL~x
1,0!2VEVG .

~2.17!

Note that we must splitcR
†cR in the x2 direction and

cL
†cL in the x1 direction. This follows from the canonical

singularity structure of the fields@Eqs. ~2.7! and ~2.8!#.
Evaluating the singularities in the operator products as
e6→0 we find

JR5 J̃ R2
e

2p
v, ~2.18!

JL5 J̃ L2
e

2p
A, ~2.19!

where J̃6 are the ‘‘naive’’ normal-ordered currents. It will
be useful to express these in terms of their Fourier modes
~the so-called ‘‘fusion operators’’!. We write

J̃R5
1

2L (
N52`

`

CNe
2 ikN

1x2
, ~2.20!

J̃ L5
1

2L (
N52`

`

DNe
2 ikN

2x1
, ~2.21!

where the sums run over the integers. ForN50 these are the
charge operators for the right and left movers,

C05 (
n5 1/2

`

~bn
†bn2dn

†dn!, ~2.22!

D05 (
n5 1/2

`

~bn
†bn2dn

†dn!, ~2.23!

while for N.0 they are given by

CN5 (
n5 1/2

`

~bn
†bN1n2dn

†dN1n!1 (
n51/2

N2 1/2

dN2nbn ,

~2.24!

DN5 (
n5 1/2

`

~bn
†bN1n2dn

†dN1n!1 (
n51/2

N2 1/2

dN2nbn .

~2.25!

For N,0 they may be obtained by conjugation:

C2N5CN
† , D2N5DN

† . ~2.26!

They can be shown to satisfy the simple algebra

@CM ,CN#5@DM ,DN#5MdM ,2N . ~2.27!

We can now discuss the implementation of Gauss’ law,
Eq. ~2.12!. Projected onto the normal-mode sector~in x2),
this is a constraint which determines the normal modes of
A on x150 in the usual way. Projected onto the zero-mode
sector we obtain

05C02zR , ~2.28!

where zR[evL/p. This can be interpreted in at least two
ways. One obvious possibility is to just use Eq.~2.28! to
determinezR in terms of the charge operator~although there
is a subtlety that arises which we shall explain in a moment!.
If we wish to treatzR as a dynamical field, however, then Eq.
~2.28! cannot hold as an operator relation; it must be imple-
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mented via restriction to some physical subspace. The prin-
cipal difficulty with this approach arises from the fact that
zR is x1 dependent whileC0 is not. Thus the operator we
would like to use to select physical states does not commute
with the HamiltonianP2, and the stability of the physical
subspace is unclear. It is immediately obvious, for example,
that the vanishing of the right-hand side of Eq.~2.28! cannot
be imposed as an eigenvalue condition, if there are to be
eigenstates of the Hamiltonian in the physical subspace. It
may be possible to realize this condition in matrix elements
between suitably defined physical states, however.

Here we shall interpret Eq.~2.28! as determiningzR in
terms of the charge. There is a subtlety in solving Eq.~2.28!
as it stands, however. We shall see below thatzR should not
be taken to be a function ofcR , as this would lead to incon-
sistencies in the Heisenberg equations. Anticipating that the
physical subspace of the Schwinger model will consist of
states with vanishingtotal chargeC01D0, let us rewrite Eq.
~2.28! in the form

05C01D02D02zR . ~2.29!

We can then take

zR52D0 , ~2.30!

which gives no conflict with the Heisenberg equations, and
what remains is the expected condition defining physical
states. Thus the zero mode of Gauss’ law is interpreted as
determiningzR in terms of D0, and giving the condition
C01D050, which must be imposed as an eigenvalue con-
dition on the states. This construction may seem somewhat
ad hocbut in fact it can be justified by careful consideration
of the proper coupling of the gauge field to matter@11#. The
situation is really the same as in classical electromagnetism.

The zero mode of Ampere’s law, Eq.~2.13!, may be ana-
lyzed similarly, leading to

zL52C0 , ~2.31!

where zL[ewL/p andw is the zero mode ofA, and the
same neutrality condition on the states,C01D050.

Next let us construct the Poincare´ generatorsP6. As dis-
cussed above, these are given as integrals of the appropriate
components of the energy-momentum tensor over both
pieces of the initial-value surface. If we work outQmn as
usual and try to evaluate Eq.~2.10!, however, we encounter
a difficulty: the integral overx1 involves fields that are ini-
tialized on the surfacex150. But we do not know these
fields as functions ofx1 until we have solved the theory.
There is a simple way of dealing with this which works, at
least for the Schwinger model. We work outQmn as usual,
but include in the calculation ofP6 only those terms that
contain quantities we know on the different parts of the
initial-value surface.

No proof exists of the correctness of this procedure, but
any alleged results forP6 can be checkeda posteriori for
correctness, by verifying that they properly translate all the
fields in x6 and satisfy the Poincare´ algebra. The same is
true of other operators, for example, the charges or the boost
generator—we can check in the end whether the expressions
we take are the correct ones. We will approach the problem

of constructingP6 from this practical perspective: we start
from the canonical energy-momentum tensor, but modify it
as necessary in response to any problems of consistency
which arise. In the end we shall justify the final expressions
by showing that they satisfy all necessary criteria.

Let us first considerP1. The relevant components of the
energy-momentum tensor, derived via the standard Noether
procedure, are

Q115 iA2cR
†]2cR , ~2.32!

Q2152 iA2cR
†]1cR1e~JRA1JLv !. ~2.33!

Using the rule stated above the only contribution comes from
Q11, so that

P15 iA2E
0

2L

dx2cR
†]2cR . ~2.34!

The operator product that occurs is singular, however, and
must be regulated. We shall again split the product inx2,
introducing an eikonal factor to maintain gauge invariance:

cR
†]2cR[ lim

e2→0
FexpS 2 ieE

x2

x21e2

dy2v D
3cR

†~x21e2!]2cR~x2!2VEVG . ~2.35!

~Note that in some cases a symmetric splitting may be nec-
essary to maintain the hermiticity of the regulated operator.!
Evaluating the singularity incR

†]2cR as e2→0 we then
obtain

P15Pfree
1 2

p

2L
zR
2 , ~2.36!

wherePfree
1 is the free-particle momentum operator for the

right movers:

Pfree
1 5(

n
S np

L D @bn
†bn1dn

†dn#. ~2.37!

It is now possible to see why it would be dangerous to have
zR be a function of the right movers, throughC0, for ex-
ample. The operatorP1 should generate translations ofcR
in its initial-value surface via

@cR ,P
1#5 i ]2cR . ~2.38!

But this is already accomplished byPfree
1 , and any additional

terms inP1 should commute withcR to avoid spoiling this
relation. This is what leads us to the modification of the
zero-mode part of Gauss’ law discussed above, and to the
solution ~2.30! for zR in terms ofD0.

In fact, Eq.~2.30! is essentially forced on us by consider-
ing the Heisenberg equation corresponding to Eq.~2.15!. We
must have

@cL ,P
1#5

1

2L
~zRcL1cLzR!, ~2.39!
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or equivalently

@cL ,zR#52cL . ~2.40!

This requirement, along with@cR ,zR#50, essentially fixes
zR to be given by Eq.~2.30!. ThusP1 takes the final form

P15Pfree
1 2

p

2L
D0
2 . ~2.41!

Note the minus sign in front of the second term. This is
crucial for the appearance of nontrivial vacuum structure, as
it allows certain states containing left movers to be degener-
ate with the Fock vacuumu0&.

If we treat zR as dynamical, then Eq.~2.36! is actually
inconsistent as it stands. This is becausepR , the momentum
conjugate tozR , does not commute with thisP

1. But itmust
commute withP1, since it is itself a zero mode, i.e., inde-
pendent ofx2, andP1 generates translations onx2. This
problem may be solved by modifyingP1, but it is interesting
to note that a naive application of point splitting appears to
be inconsistent with treatingzR as dynamical.

The HamiltonianP2 can be constructed similarly. The
only subtlety here involves the gauge correction of the sin-
gular operator product occurring in

iA2E
0

2L

dx1cL
†]1cL . ~2.42!

Because this product is split in thex1 direction, the eikonal
factor involvesA. But most ofA is unknown on the surface
x250; its normal modes are constrained functionals of
cR , determined by solving Gauss’ law. The solution to this
difficulty is to keep in the expression forP2 only that part of
A that we do know onx250, namely its zero mode~2.31!.
~That C0 is x

1 independent will be checked momentarily.!
With this ansatz we arrive at

P25Pfree
2 2

p

2L
C0
21

e2L

2p2 (
N52`

`

8S 1N2DCNC2N ,

~2.43!

where the prime indicates that the term withN50 is omitted
andPfree

2 is the free energy of the left movers:

Pfree
2 5(

n
S np

L D @bn
†bn1dn

†dn#. ~2.44!

It is clear that this P2 commutes with C0, so that
]1C050 as promised.

At this stage we have dynamical operators that correctly
translate all the fermionic degrees of freedom inx6, and are
consistent with the solutions we took for the zero modes of
the gauge field. Gauss’ law is also satisfied by construction.
The only issue that remains is whether or not Ampere’s law,
Eq. ~2.13!, is satisfied.

This is straightforward to check. The zero mode of Am-
pere’s law reduces to the conditionC01D050, which de-
fines the physical subspace. To check the normal mode part,
we take the operator]2A obtained from solving Gauss’ law
and commute it withP2 to obtain itsx1 derivative. It is

straightforward to check that this results in an equality, ex-
cept that the terms inJL involving theDN are not reproduced
in the commutator. Thus Ampere’s law is only obtained in
matrix elements between states that satisfy

DNuF&50 ~N.0!, ~2.45!

This must be added to the conditions defining physical states.
This is a very important result, as it removes most of the

states with left-moving quanta from the physical subspace. In
fact, it can be shown@11# that theonly states with left mov-
ers that remain in the physical subspace are the states

uVN&5dN21/2
† bN21/2

†
•••d1/2

† b1/2
† u0&, ~2.46!

uV2N&5bN21/2
† dN21/2

† •••b1/2
† d1/2

† u0&, ~2.47!

whereN51,2, . . . , andstates created by applying function-
als ofcR to these. It is straightforward to check that these are
all eigenstates ofP6 with eigenvalue zero, so that they are
degenerate with the bare vacuum. The physical ground state
of the theory is a superposition of these, which can be shown
to be necessary to satisfy the requirement of cluster decom-
position:

uu&5 (
N52`

`

e2 iNuuVN&. ~2.48!

Thus we recover the expectedu structure of the physical
vacuum state in this model.

The full solution of the theory is straightforward given the
form of P2. We first verify that the states obtained by acting
with the CN on uu& span the physical subspace. We then
define creation and destruction operators from the positive
and negative frequencyCN , respectively. Equation~2.27! is
then a bosonic canonical commutator and the Hamiltonian is
diagonal. In the end we recover the well-known results that
the physical states correspond to noninteracting bosons of
masse/Ap. In addition, there is a nonvanishing condensate

^uu c̄cuu& with the correct dependence onu. One can also
check that the correct chiral anomaly is obtained. These and
other issues are discussed in detail in@11#.

Our goal in this section was to use the Schwinger model
to highlight the issues that will be important when we dis-
cuss the non-Abelian theory. The main lessons to be drawn
concern the need to include degrees of freedom initialized on
two different null planes, and the regulation of singular op-
erator products in a gauge-invariant way. In addition, we
must construct dynamical operators that are consistent with
the equations of motion and initial conditions, and identify a
subspace in which those equations of motion that are not
satisfied as operator relations can hold. Finally, we must
verify that this physical subspace is stable under evolution in
x6.

III. SU „2… GAUGE THEORY COUPLED TO ADJOINT
FERMIONS: BASICS

Let us now consider SU~2! gauge theory coupled to mass-
less adjoint fermions in 111 dimensions. The Lagrangian
density for the theory is

56 1039VACUUM STRUCTURE OF TWO-DIMENSIONAL GAUGE . . .



L52
1

2
Tr~FmnFmn!1

i

2
Tr~cḡmDJ mc!, ~3.1!

where Dm5]m1ig@Am ,# and Fmn5]mAn2]nAm
1ig@Am ,An#. A convenient representation for theg matrices
is g05s2 and g15 is1, wheresa are the Pauli matrices.
With this choice the~Majorana! Fermi field may be taken to
be Hermitian.

The matrix representation of the fields makes use of the
fundamental SU~2! generatorsta5sa/2. It is convenient to
introduce a color helicity, or Cartan, basis, defined by

t6[
1

A2
~t16 i t2!, ~3.2!

with t3 unchanged. These satisfy

@t1,t2#5t3, ~3.3!

@t3,t6#56t6. ~3.4!

Lower helicity indices are defined byt65t7, and matrix-
valued fields are decomposed as, for example,

Am5A3
mt31A1

m t11A2
m t2, ~3.5!

where Am,6[(A1
m6 iA2

m)/A2 and Am,65A7
m . @Note also

that (A1
m )†5A2

m .# The Fermi field will be written as

CR/L5cR/Lt
31fR/Lt

11fR/L
† t2, ~3.6!

wherefR/L[(CR/L
1 2 iCR/L

2 )/A2 and the labelsR/L indicate
light-front spinor projections as given in Eq.~2.2!. Note that
under a gauge transformation the Fermi field transforms ac-
cording to

CR/L8 5UCR/LU
21, ~3.7!

whereU is a spacetime-dependent element of SU~2!.
We shall regulate the theory in the infrared by imposing

certain boundary conditions inx6. The fieldsfR andfL will
be taken to be antiperiodic inx2 andx1, respectively. It will
be convenient, however, to takecR andcL to be periodic in
x2 and x1, respectively~‘‘twisted’’ boundary conditions!.
The reasons for this will become clear as we progress. For
consistency, then,A6

m must be taken to be antiperiodic in
x2, whileA3

m is periodic. In all cases the periodicity length is
2L.

The Fock representation for the fermionic degrees of free-
dom is obtained by Fourier expandingCR on x150 and
CL on x

250. We have

cR~0,x2!5
1

21/4A2L (
N51

`

~aNe
2 ikN

1x2
1aN

†eikN
1x2

!1c° R ,

~3.8!

fR~0,x2!5
1

21/4A2L (
n51/2

`

~bne
2 ikn

1x2
1dn

†eikn
1x2

!,

~3.9!

cL~x
1,0!5

1

21/4A2L (
N51

`

~aNe
2 ikN

2x1
1aN

†eikN
2x1

!1c° L ,

~3.10!

fL~x
1,0!5

1

21/4A2L (
n51/2

`

~bne
2 ikn

2x1
1dn

†eikn
2x1

!,

~3.11!

where we have explicitly separated out the zero modes of
cR/L . As before, the lower-case~upper-case! indices run
over positive half-odd integers~integers! and kn

65np/L.
The Fourier modes obey the algebra

$aN
† ,aM%5$aN

† ,aM%5dN,M , ~3.12!

$bn
† ,bm%5$dn

† ,dm%5$bn
† ,bm%5$dn

† ,dm%5dn,m ,
~3.13!

$c° R ,c° R%5$c° L ,c° L%5
1

2A2L
, ~3.14!

with all mixed anticommutators vanishing. These are equiva-
lent to the canonical anti-commutation relations

$CR~0,x2!,CR~0,y2!%5
1

A2
d~x22y2!, ~3.15!

$CL~x
1,0!,CL~y

1,0!%5
1

A2
d~x12y1!. ~3.16!

The fermionic Fock space is generated by acting with the
various creation operators on a vacuum stateu0&.

For simplicity, in the remainder of this paper we shall
discard the zero modes ofcR/L . It can be shown that includ-
ing them does not qualitatively affect any of our results; they
merely complicate parts of the analysis. In addition, their
physical meaning is somewhat ambiguous. For example,
they lead to a nonvanishing fermion condensate even in free
field theory. This same phenomenon was observed in the
equal-time context in Ref.@22#. We shall therefore simply
exclude them from the model; the condensate we obtain is
then entirely an effect of the interaction. Note that this trun-
cation does not lead to inconsistencies in the model. For
example, the Heisenberg equations forcR/L will simply re-
duce to the appropriate Euler-Lagrange equations with the
zero modes removed. In addition, the Poincare´ algebra is
unaffected.

The current operators for this theory are

J1[JR52
1

A2
@CR ,CR#, ~3.17!

J2[JL52
1

A2
@CL ,CL#. ~3.18!

To avoid confusion, we shall henceforth always write the
currents withR or L in place of the upper Lorentz index.
These expressions are ill defined as they stand since they
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contain products of operators at the same point. This is a
common problem and occurs in the expressions for the Poin-
caré generators as well. We shall regulate these by point
splitting, introducing an eikonal factor to maintain gauge in-
variance, and then taking the splitting to zero after removing
the divergences. One can show, for example, that

FexpS igE
x

x1em

A•dxDC~x1em!

3expS 2 igE
x

x1em

A•dxD ,C~x!G ~3.19!

transforms covariantly in the adjoint representation. In the
limit of small em one effectively replaces

C~x!→C~x1em!1 ig@A•e,C~x1em!#. ~3.20!

The singularity in the Fermi operator product ase→0 picks
up thee in the above expression leaving an additional con-
tribution. The splitting must be performed in thex2 direction
for CR and in thex1 direction forCL . A straightforward
calculation gives

JR5 J̃ R2
g

2p
A1, ~3.21!

JL5 J̃ L2
g

2p
A2, ~3.22!

where J̃R/L are the naive normal ordered currents.
In the helicity basis the components ofJ̃ R take the forms

J̃3
R5:

1

A2
~fR

†fR2fRfR
† !:, ~3.23!

J̃2
R5:

1

A2
~cRfR

†2fR
†cR!:, ~3.24!

J̃1
R5:

1

A2
~fRcR2cRfR!:. ~3.25!

The corresponding expressions for the components ofJ̃ L are
identical, with R→L. It is convenient to Fourier expand
these currents and discuss the properties of their components.
We write

J̃ R,a5
1

2L (
N52`

`

CN
ae2 ipNx2/L, ~3.26!

J̃ L,a5
1

2L (
N52`

`

DN
ae2 ipNx1/L, ~3.27!

wherea is a color index and the sums run over integers for
a53 and half-odd integers fora56. It is well known that
the Fourier components satisfy a Kac-Moody algebra with
level two @23#. We shall discuss this explicitly for theCN

a ;
with appropriate substitutions an identical set of relations
holds for theDN

a .

In terms of the Fock operators we have, forN,n.0,

CN
35 (

n51/2

`

~bn
†bN1n2dn

†dN1n!2 (
n51/2

N21/2

bndN2n ,

~3.28!

Cn
15 (

M51

`

aM
† dn1M2 (

m51/2

`

bm
† an1m2 (

m51/2

n21

dman2m ,

~3.29!

Cn
25 (

m51/2

`

dm
† an1m2 (

M51

`

aM
† bM1n2 (

m51/2

n21

an2mbm .

~3.30!

We may obtain the modes forN,n,0 from the above by
Hermitian conjugation:

C2N
3 5~CN

3 !†, C2n
1 5~Cn

2!†, C2n
2 5~Cn

1!†.
~3.31!

Finally,C0
3 is just the three-color charge in the right-moving

fermions:

C0
35(

n
~bn

†bn2dn
†dn!. ~3.32!

In the Cartan basis, the Kac-Moody algebra takes the form

@CN
3 ,CM

3 #5NdN,2M , ~3.33!

@Cn
6 ,Cm

6#50, ~3.34!

@CN
3 ,Cm

6#56CN1m
6 , ~3.35!

@Cn
1 ,Cm

2#5Cn1m
3 1ndn,2m . ~3.36!

It is straightforward to verify these relations using the fun-
damental anticommutators~3.12! and ~3.13!. The algebra
satisfied by theD ’s is of course identical.

IV. ZERO MODES AND GAUGE FIXING

The main subtlety arising from the use of discretization as
a regulator is in fixing the gauge. It is most convenient in
light-front field theory to choose the light-cone gauge
A150. However, this is not possible with the boundary con-
ditions we have imposed; since gauge transformations must
be periodic up to an element of the center of the gauge group
~hereZ2), we cannot gauge the zero mode ofA1 to zero
@21#. It is permissible to take]2A

150, as in the Schwinger
model. Having made that choice, there are two issues which
arise involving the zero modes of the gauge field.

The first issue is whether the zero modes should be treated
as independent degrees of freedom or as constrained func-
tionals of the Fermi fields. In the equal-time representation
this can usually be resolved on the basis of whether or not
the Lagrangian gives a conjugate momentum for the operator
in question. In the light-front representation the issue is more
complex; in the Schwinger model, for example, the zero
modes of the gauge fields are constrained even though the
Lagrangian provides a conjugate momentum.
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Some of the difficulties in treating the zero modeA1 as a
degree of freedom were mentioned in Sec. II. They arise
principally because of Eq.~2.28!, which cannot hold as an
operator relation. Imposing it as a condition on states is
somewhat delicate, however, since the stability of the physi-
cal subspace is not obvious. These and other aspects of the
formulation with a dynamical zero mode are discussed in
Ref. @17#. Here we shall avoid this difficulty by considering
a formulation in which the zero mode is constrained.

In addition,A1 enters the operatorP1 if we compute the
Poincare´ generators according to the usual prescription. But
if A1 is dynamical, then the resultingP1 does not commute
with the momentum conjugate toA1. This difficulty can
perhaps be resolved by replacing the troublesome terms in
P1 with operators to which they are weakly equivalent~i.e.,
equal in the physical subspace!. Note that we must apply this
procedure in the constrained case as well. If in the Schwinger
model we had takenzR to be a functional ofcR ~possibly
along with other things! we would have found an immediate
contradiction between our definitions and the Heisenberg
equations. Such a solution would be inconsistent even prior
to any dynamical considerations. That is why in the
Schwinger modelzR is taken to be a functional ofcL ~al-
though there are other ways to reach the same conclusion!.
The non-Abelian case turns out to be even more compli-
cated, as we shall see.

The second issue involving the zero modes is the question
of how to accomplish the residual gauge fixing using con-
stant~in x1) color matrices. In the equal-time representation,
it is convenient to rotate the zero modes ofA1 so that only
the color 3 component is nonzero. Here we shall mostly be
interested in the case where the zero modes of the gauge field
are treated as constrained. In this case, since we should fix
the gauge in terms of the degrees of freedom and let the
constraint equations determine the constrained variables, we
should proceed in a different way. The natural thing would
presumably be to use the residual gauge freedom to rotate
two components of the vector current to zero; probably that
is the choice most nearly equivalent to rotating the gauge
field zero modes in the equal-time representation. The prob-
lem is that this approach is technically difficult to implement.
The Dirac-Bergmann procedure leads to a complicated non-
linear relation between the Fermi modes, due to the fact that
the current is bilocal in the Fermi fields. A procedure which
is very similar to the suggested gauge fixing, but is much
simpler to carry out, is to use twisted boundary conditions
for the Fermi fields@24,25# as we do here. Presumably the
results of the Dirac-Bergmann procedure would be much the
same if we were able to carry it out, but we have no proof of
this. With these boundary conditions, the color 1 and 2 com-
ponents of the gauge field must also be antiperiodic inx2

and simply have no zero modes. Thus whether or not we
treat the zero modes ofA1 as constrained, we have

A15v~x1!t3, ~4.1!

with v independent ofx2. As we shall see, in the constrained
casev turns out to be independent ofx1 as well.

While one could simultaneously rotateA2[A so that it
has no color 3 zero mode@10,26#, we shall not do that here.

Instead we will retain this zero mode, which we callw, and
determine it in the solution of the equations of motion.

It is useful to introduce a set of transformations which are
formally the ‘‘large’’ gauge transformations which connect
different Gribov regions@27#. We shall denote these byTN

R

andTN
L , with N any integer:

TN
R5expF2

iNp

2L
x2t3G , ~4.2!

TN
L5expF iNp

2L
x1t3G . ~4.3!

It is convenient to define the dimensionless variables
zR5gvL/p andzL5gwL/p, which TN

R/L shifts by6N:

TN
RzR~TN

R!215zR1N, ~4.4!

TN
LzL~TN

L !215zL2N. ~4.5!

In addition,TN
R/L generates a spacetime-dependent phase ro-

tation on the matter fieldfR/L ,

TN
RfR~TN

R!215e2 iNpx2/LfR , ~4.6!

TN
LfL~TN

L !215eiNpx1/LfL , ~4.7!

which however preserves the boundary conditions onfR/L .
Note that forTN

R/L to be a symmetry of the theory, the solu-
tions for zR/L in terms of the Fermi fields must correctly
reproduce Eqs.~4.4! and ~4.5! under the transformations
~4.6! and ~4.7!. This will turn out to be the case.

The theory is also invariant under the so-called Weyl
transformation, denotedR. This is also formally a gauge
transformation, and takes

RzR/LR
2152zR/L , ~4.8!

RfR/LR
215fR/L

† . ~4.9!

The action ofT1
R/L andR on the fermion Fock operators

can be determined easily from Eqs.~4.6!, ~4.7!, and ~4.9!.
T1
R gives rise to a spectral flow for the right-handed particles,

T1
Rbn~T1

R!215bn21 , ~n.1/2!,

T1
Rdn~T1

R!215dn11 , ~4.10!

T1
Rb1/2~T1

R!215d1/2
† ,

while T1
L gives rise to a spectral flow for the left-handed

particles,

T1
Ldn~T1

L!215dn21 , ~n.1/2!,

T1
Lbn~T1

L!215bn11 , ~4.11!

T1
Ld1/2~T1

L!215b1/2
† .

The action ofR is analogous to charge conjugation,

RbnR
2152dn , ~4.12!
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RbnR
2152dn . ~4.13!

The aN andaN are invariant under bothT1
R/L andR. From

the behavior of the Fock operators it is straightforward to
deduce the behavior of the elements of the Kac-Moody alge-
bra underT1

R/L andR, and show that the algebra is invariant.
It is also convenient to introduce a set of statesuVM&,

whereM is any integer, which are related to one another by
TN[TN

RTN
L transformations. The Fock vacuumu0& is defined

to be uV0&, and

uVM&[~T1!
MuV0&, ~4.14!

with (T1)
215T21. It is straightforward to determine the par-

ticle content of theuVM& from the properties of theT1 trans-
formation @28#. One finds

uVN&5dN21/2
† bN21/2

†
•••d1/2

† b1/2
† u0&, ~4.15!

uV2N&5dN21/2
† bN21/2

† •••d1/2
† b1/2

† u0&, ~4.16!

for N>0. These states are thus analogous to the ‘‘n-
vacua’’ ~2.46! and ~2.47! found in the Schwinger model.

The operatorR satisfiesR251, so that its action on the
Fock vacuum may be defined to be

Ru0&56u0&. ~4.17!

Along with Eqs. ~4.12! and ~4.13!, this choice defines the
action ofR on all states. Without loss of generality we may
take the plus sign in Eq.~4.17!. ThenR interchangesuVN&
and uV2N&:

RuVN&5~21!NuV2N&. ~4.18!

The factor (21)N arises from the different ordering of the
left- and right-moving creation operators in Eqs.~4.15! and
~4.16!.

V. EQUATIONS OF MOTION

It is straightforward to derive the equations of motion for
the theory in the gauge we have chosen. In the color helicity
basis the Dirac equation separates into

]2cL50, ~5.1!

]2fL52 igvfL , ~5.2!

]1cR5 ig@A2fR2A1fR
† #, ~5.3!

]1fR5 ig@A1cR2A3fR#. ~5.4!

In addition we have Gauss’ law,

2]2
2 A35gJ3

R, ~5.5!

2~]26 igv !2A65gJ6
R , ~5.6!

and Ampere’s law,

]1]2A31 ig@A1~]22 igv !A22A2~]21 igv !A1#5gJ3
2 ,

~5.7!

]1@~]26 igv !A6#

6 ig@A3~]26 igv !A62A6]2A3#5gJ6
2 . ~5.8!

These latter relations will require particularly careful consid-
eration, as they explicitly connect left- and right-handed
quantities. In particular we will find~as in the Schwinger
model! that some of these equations can only be satisfied in
a subspace of the full Hilbert space of the theory. This sub-
space will be defined to be the physical one.

The current operators appearing in Eqs.~5.5!–~5.8! in-
clude the gauge corrections computed in Eq.~3.21!. Because
of the gauge choice and the twisted boundary conditions,
however, the corrections to the color6 components ofJR

vanish.
We shall discuss the implementation of the Dirac equation

and Ampere’s law below; for the moment let us consider the
solution of Eqs.~5.5! and ~5.6!. As is usual in light-front
field theory, these relations mainly serve to determine the
field A on x150 in terms of the dynamical degrees of free-
dom. Note that in the gauge we have chosen, Gauss’ law
separates and its individual components can be solved di-
rectly; this is the motivation for introducing the color helicity
basis.

Equation~5.5! can be solved immediately to obtain the
normal mode part ofA3 on x

150:

A3~0,x
2!5

gL

2p2 (
N52`

`

8
CN
3

N2 e
2 iNpx2/L. ~5.9!

The zero mode ofA3 is not determined by Eq.~5.5!. We
shall return to this problem in a moment, but for now note
that since there is no zero mode on the left-hand side of Eq.
~5.5!, the zero mode of the right-hand side must also vanish.
This gives

05C0
32zR . ~5.10!

This relation determineszR in terms of a charge operator,
subject to the same caveat we had in the Schwinger model: it
is inconsistent to takezR to be an operator involving right-
moving fermions. We shall therefore rewrite Eq.~5.10! in
the form

05C0
31D0

32D0
32zR , ~5.11!

and take

zR52D0
3 . ~5.12!

What remains of the three-color component of Gauss’ law is
then

C0
31D0

350, ~5.13!

which can be imposed as an eigenvalue condition defining
physical states.

Now let us consider Eq.~5.6!. Inserting the operator so-
lution ~5.12! for zR this becomes

2S ]27
ip

L
D0
3D 2A65gJ6

R . ~5.14!
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The choice of twisted boundary conditions results in the co-
variant derivatives having no zero eigenvalues, so they can
be inverted to give

A6~0,x2!5
gL

2p2 (
n52`

` Cn
7

~n6D0
3!2

e2 inpx2/L. ~5.15!

VI. POINCARÉ GENERATORS

As discussed previously, the Poincare´ generatorsP6 re-
ceive contributions from both parts of the initial-value sur-
face @Eq. ~2.10!#. We shall denote the contributions coming
from integrating overx150 and x250 by PR

6 and PL
6 ,

respectively.
It is straightforward to work out the energy-momentum

tensor following the usual Noether procedure. We obtain
~with ]2A

150)

Q12522Tr~F12]1A
1!2Tr~F12F12!

1
i

A2
Tr@CR]2CR2~]2CR!CR#, ~6.1!

Q21522Tr~F12]2A
2!2Tr~F12F12!

1
i

A2
Tr@CL]

1CL2~]1CL!CL#, ~6.2!

Q115
i

A2
Tr@CR]1CR2~]1CR!CR#, ~6.3!

Q225
i

A2
Tr@CL]

2CL2~]2CL!CL#22Tr~F21]1A
2!.

~6.4!

As in the Schwinger model, these lead to expressions we
cannot evaluate: they involve integrals of fields on surfaces
where we do not know them. We will follow the rule dis-
cussed previously, and simply drop the terms we do not
know how to calculate. In the end we shall justify our results
by showing that they correctly translate all fields and satisfy
the Poincare´ algebra.

First let us constructP1. Using the rule of dropping terms
we do not know how to calculate, we obtain

P15 iA2E
0

2L

dx2Tr~CR]2CR!. ~6.5!

The operator product in this expression is singular and re-
quires regularization and renormalization. This is accom-
plished as before by splitting the product inx2, introducing
an appropriate exponential factor to maintain gauge invari-
ance. We find

P15 (
N.0

SNp

L DaN†aN1 (
n.0

S np

L D @bn
†bn1dn

†dn#2
p

2L
zR
2 ,

~6.6!

which leads to

P15 (
N.0

SNp

L DaN†aN1 (
n.0

S np

L D @bn
†bn1dn

†dn#

2
p

2L
~D0

3!2 ~6.7!

when Eq.~5.12! is used. This expression will be tested fur-
ther for consistency below and found to be satisfactory.

Next let us discussP2. The left-moving contribution is
given by

PL
25 iA2E

0

2L

dx1Tr~CL]1CL!. ~6.8!

This operator product is singular, and is regulated by a
gauge-corrected splitting inx1. We find

PL
25 (

N.0
SNp

L DaN
†aN1 (

n.0
S np

L D @bn
†bn1dn

†dn#

2
g2

2pE0
2L

dx1Tr~A2!. ~6.9!

Again, we do not know most ofA on the surfacex250 so
we keep only the part we do know on that surface. This will
turn out to be the zero mode ofA3, which will be shown to
be x1 independent. Thus we have

PL
25 (

N.0
SNp

L DaN
†aN1 (

n.0
S np

L D @bn
†bn1dn

†dn#2
p

2L
zL
2 .

~6.10!

The contribution from the surfacex150 has the standard
form one expects, in~111!-dimensional YM theory coupled
to matter,

PR
252g2E

0

2L

dx2TrS J1
1

D2
2 J

1D . ~6.11!

None of these operator products are singular so evaluating
this expression is straightforward. The result is most el-
egantly expressed in terms of theC’s. We find

PR
25

g2L

4p2F ( 8
N52`

`
1

N2CN
3C2N

3

1 (
n52`

`
1

~n2D0
3!2

$Cn
1 ,C2n

2 %G . ~6.12!

There is a problem with this expression, however. The
presence ofD0

3 in PR
2 is in conflict with the~kinematical!

Heisenberg equation forfL . We should have

2 i @fL~x
1,0!,P2#5]1fL~x

1,0!, ~6.13!

which is already accomplished by the free part ofPL
2 . Since

@fL ,D0
3#5fL the interaction terms inPR

2 spoil Eq. ~6.13!.
To cure this problem we can simply modifyPR

2 by replacing
D0
3 with an operator that is equal to it in the physical sub-

space. The natural thing to try is the substitution
D0
3→2C0

3, motivated by Eq.~5.13!. This is potentially in
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conflict with the Dirac equation forfR , however. Before the
substitution we obtained the correct commutator offR with
P2, but afterwards the fact that@fR ,C0

3#Þ0 leads to a new
and unwanted term in@fR ,P

2#:

@fR ,P
2#5

g2L

4p2(
n

FfR ,
1

~n1C0
3!2G$Cn

1 ,C2n
2 %1•••,

~6.14!

where the dots represent the terms we had originally. Now
this extra term can be shown to vanish in matrix elements
between states satisfying Eq.~5.13!, but this happens for a
fairly trivial reason: it is a colored operator and the physical
states are required to be colorless. A less trivial check is to
consider the commutator of a colorless operator such as
fR
†fR with our newP2. In fact the commutator of this op-

erator also reduces, in the subspace defined by Eq.~5.13!, to
what we obtain from the Dirac equation, so the modified
P2 appears to be consistent. Presumably one wants all rela-
tions derivable from the equations of motion to be recovered
in the physical subspace. It would be helpful to have a more
detailed understanding of this point, as well as the extent to
which Eq.~6.12! satisfies the necessary conditions.

Equations~6.7!, ~6.10!, and ~6.12!, with D0
3→2C0

3, are
our trial forms forP6. Our next task is to check whether
these correctly reproduce the Dirac equation and Ampere’s
law for this theory. This is a straightforward exercise in com-
muting fields withP6 and comparing the results with the
corresponding equations of motion.

It turns out that the Dirac equation forcR is satisfied if

zL52C0
3 , ~6.15!

which we shall take to be a strong~operator! equality. This
determines the zero mode ofA3, which we were not able to
fix using Gauss’ law. Note thatzL commutes withP

2, and
so isx1 independent as promised.

Next, Ampere’s law is satisfied if

DN
35Dn

650. ~6.16!

These conditions must be realized weakly, in matrix ele-
ments between states. We shall require physical states to
satisfy

DN
3 uF&50 ~N.0!, ~6.17!

in analogy with the Schwinger model. Note, however, that
because

@~C0
31D0

3!,Dn
6#56Dn

6 ~6.18!

@see Eq.~3.35!#, matrix elements ofDn
6 between states that

satisfy Eq.~5.13! are automatically zero. It is therefore not
necessary to impose the conditionDn

6'0 separately.
Finally, the zero mode of the color 3 component of Am-

pere’s law reduces to

P[(
n

1

~C0
31n!3

$Cn
1 ,C2n

2 %50, ~6.19!

which again must be realized in matrix elements between
physical states. To see that Eq.~6.19! is in fact satisfied in
the physical subspace, let us discuss the physical states in
more detail. These will be obtained by acting with gauge-
invariant operators built from the right-handed fields on the
physical vacuum stateuV&:3

uF&5OuV&. ~6.20!

Now, the transformationR is a symmetry of the theory, as is
easily verified from the expressions forP6. Without loss of
generality we may choose the vacuum to be an eigenstate of
R with eigenvalue11. Since a gauge-invariant operator is in
particular invariant underR,

ROR5O, ~6.21!

it follows that all physical states are also eigenstates ofR
with eigenvalue11. ButP is odd underR,

RPR52P, ~6.22!

and therefore matrix elements ofP between physical states
are zero as required.

The final result is that it appears to be consistent to take
P1 as given in Eq.~6.7! and

P25 (
N.0

SNp

L DaN
†aN1 (

n.0
S np

L D @bn
†bn1dn

†dn#

2
p

2L
~C0

3!21
g2L

4p2F ( 8
N52`

`
1

N2CN
3C2N

3

1 (
n52`

`
1

~n1C0
3!2

$Cn
1 ,C2n

2 %G . ~6.23!

Physical states have vanishing color 3 charge,

~C0
31D0

3!uF&50, ~6.24!

and satisfy Eq.~6.17!. One can check that the operators that
annihilate physical states commute withP1 andP2, so the
physical subspace is stable. It can also be shown that
@P1,P2#50, as required.

VII. AXIAL ANOMALY

As a further check of the formulation, let us now discuss
the axial anomaly in this theory. We shall focus on the color
3 part of the currents, for which the anomaly relation reads

]mJ5
m,35

g

2p
emnFmn

3 . ~7.1!

In 111 dimensions, the axial current
J5

m52@C,gmg5C#/A2 is related to the vector currentJm

through J5
m5(JR,2JL). In addition, it can be shown that

3Conditions~6.17! remove from the physical subspace any states
with a left-handed particle content beyond what is present in the
vacuum.
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covariant derivatives reduce to partial derivatives forJm,3 so
the conservation equations below take the Abelian form for
the matter currents.

To check Eq.~7.1! we first calculate]1J3
R from

i @P2,J3
R~x!#5]1J3

R~x!. ~7.2!

Using

@ J̃3
R~0,x2!, J̃3

R~0,y2!#5
i

2p
d8~x22y2! ~7.3!

we find

]1J3
R~0,x2!5

g

2p
]2A3~0,x

2!, ~7.4!

where we have chosen to evaluate the currents at (0,x2).
Similarly, we can compute]2J3

L by commuting it withP1.

Since J̃3
L is independent ofx2 by the equations of motion,

the only contribution comes from the gauge correction to
J3
L . Thus we find

]2J3
L~0,x2!52

g

2p
]2A3~0,x

2!. ~7.5!

Combining these results we then obtain

]mJ3
m5]1J3

R1]2J3
L

50 ~7.6!

and

]mJ3
5,m5]1J3

R2]2J3
L5

g

p
]2A3

5
g

2p
emnFmn

3 , ~7.7!

as expected. The formulation of the theory therefore appears
to be satisfactory, and we can now study the structure of the
ground state.

VIII. VACUUM STATES

It is straightforward to verify that the statesuVN& are all
degenerate~they haveP15P250) and lie in the physical
subspace. The physical vacuum states will thus be appropri-
ate superpositions of these, constructed to be~phase! invari-
ant under the residualT1 andR symmetries.

The most general superposition consistent withT1 invari-
ance is simply

uu&5 (
N52`

`

e2 iNuuVN&, ~8.1!

which satisfies

T1uu&5eiuuu&. ~8.2!

Acting with the Weyl transformationR then gives

Ruu&5 (
N52`

`

e2 iNu~21!NuV2N&

5 (
N52`

`

eiN~u2p!uVN&. ~8.3!

This is equal touu& up to a phase only foru56p/2. We
therefore have a pair of distinct physical vacuum states la-
beled by a discrete vacuum angle. We shall refer to these
physical vacua asuV6&.

We have here motivated the formation of the superposi-
tion ~8.1! as a way of resolving the residual~large! gauge
invariance of the theory. It is presumably also necessary to
build the theory on a vacuum of this form in order to satisfy
the cluster property, as in the Schwinger model. To verify
this explicitly for the present model, however, we would
need to do a more complete dynamical calculation.

Let us now consider whether this vacuum structure has
any affect on the spectrum of the theory, that is, whether the
spectrum depends on the vacuum angleu56p/2. Consider
calculating a matrix element ofP2 between any two physi-
cal states:

^V6uO8~PR
21PL

2!OuV6&, ~8.4!

whereO andO8 are gauge-invariant operators constructed
from the right-handed fields. SincePL

2 commutes with these
it simply passes through to act on the vacuum, where it gives
zero. In addition, sinceO and O8 contain no left-handed
fields, the left-handed particles in the vacuum serve to ‘‘di-
agonalize’’ the matrix element between the differentuVM&:

^V6uO8PR
2OuV6&5 (

N52`

`

^VNuO8PR
2OuVN&. ~8.5!

Now O andO8 are invariant underT1, and furthermore it
can be shown that

T1PR
2T1

215PR
2 . ~8.6!

Inserting factors of (T1
21T1)

N between the states and opera-
tors we therefore find

^VNuO8PR
2OuVN&5^V0uO8PR

2OuV0&. ~8.7!

All the matrix elements on the right-hand side of Eq.~8.5!
are thus identical, and so

^V6uO8PR
2OuV6&5^V0uO8PR

2OuV0&, ~8.8!

up to the ~infinite! normalization factor necessary for the
stateuV6&. Finally, we note thatC0

3uV0&50, so that we may
replaceC0

3 by zero in the expression forPR
2 . The resulting

PR
2 is simply the usual discrete light-cone quantized~DLCQ!

Hamiltonian for this theory, that is, with the zero modes
discarded. The final result is that matrix elements of the
Hamiltonian in the full theory are equal to those we would
obtain by taking the trivial Fock vacuumuV0& and ignoring
the zero modes. Thus the standard DLCQ procedure gives
the correct spectrum for this theory.
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We should perhaps emphasize that in more complicated
theories, such as QCD, the analogous result will certainly not
hold. In that case there are physical quantities that do depend
on the vacuum angleu, and it will not be possible to cor-
rectly reproduce these by neglecting the vacuum structure.

IX. THE CONDENSATE

It is generally believed that YM111 coupled to adjoint
fermions develops a condensateS[^VuTr(C̄C)uV&. Thus
far S has been calculated in the large-N limit @29# and in the
small-volume limit for SU~2! using equal-time quantization
@30#. A condensate was also computed in a chiral version of
this theory containing only right-handed fermions@28#. In
that calculation it was the field itself which acquired a
vacuum expectation value and the result was fundamentally
different from what we are considering here.

It is straightforward to computeS in the vacuum~8.1!. To
be specific, we shall evaluateS at the spacetime point
(0,x2). The terms in Tr(C̄C) that can contribute to the
vacuum expectation value are

Tr~C̄C!5 i ~fL
†fR2fR

†fL!1•••. ~9.1!

These operator products are not singular, so point splitting is
not required.

The fieldfR(0,x
2) is just given by its initial value~3.9!,

of course. To obtainfL at (0,x
2) we must solve its equation

of motion, i.e., Eq.~5.2!, with the noncommuting factors on
the RHS symmetrized:

]2fL5
ip

2L
~D0

3fL1fLD0
3!. ~9.2!

Integrating this givesfL(0,x
2) in terms of its initial value at

the corner point (0,0):

fL~0,x
2!5eipx

2D0
3/2LfL~0,0!e

ipx2D0
3/2L. ~9.3!

With these results it is straightforward to evaluate the con-
densate; we find

^V6uTr~C̄C!uV6&56
1

A2L
. ~9.4!

Note that the result is independent ofx2, as it should be.
This happens because the exponential factors in Eq.~9.3!
acting on theuVN& exactly compensate the exponentials from
the field expansion~3.9!.4 In addition, however, the conden-
sate is proportional to 1/L, and so vanishes in the continuum
limit.

This type of behavior is also found in the light-front ver-
sion of the Schwinger model discussed in@11#. In that case
the 1/L behavior can be traced to the crude treatment of the
small-p1 region—in particular the violation of parity—that
results when periodicity conditions are imposed on null
planes@31#. In the Schwinger model the problem can be

cured by forcibly parity symmetrizing the theory after it has
been solved. In the present example this sort of approach
may not be practical, since the model is not analytically
soluble.

As discussed previously, the condensate, or more pre-
cisely the presence of nontrivial vacuum structure, has no
effect on the mass spectrum of the theory. This result is in
accordance with recent work of Kutasov and Schwimmer
@16#, who claim that there are classes of two-dimensional
YM theories which have the same massive spectrum. A nec-
essary condition for this universality is the decoupling of the
massless~vacuum! and massive sectors. Our construction ex-
hibits this directly. In particular, the massive spectrum may
be obtained by neglecting the vacuum structure and gauge
field zero modes, that is, by applying the naive light-front
formalism. In addition, the only left-moving quanta that en-
ter physical states reside in the vacuum; the physical excita-
tions are built entirely from the right movers.

It would be interesting to study whether the spectrum de-
pends on the vacuum angle when a fermion mass is turned
on, as, for example, occurs in the massive Schwinger model.
At present we have nothing definite to say on this question,
although the condensateS does arise in at least one interest-
ing context in the massive theory. It has been shown recently
that two-dimensional gauge theories with massless fermions
can screen ‘‘fractional’’ test charges—charges in representa-
tions of the gauge group that are smaller than the one carried
by the dynamical fermions in the theory@32#. Thus, for ex-
ample, in the theory with adjoint fermions the fundamental
Wilson loop exhibits a perimeter-law behavior. When the
dynamical fermions are given a massm, however, the
screening disappears and fractional charges are confined,
with a string tension

s52mS. ~9.5!

It is unclear whether this has implications for the question of
whether the spectrum of the theory with massive fermions
itself is affected by the condensate@32#.

X. CONCLUSIONS

We have shown that theZ2 vacuum structure of SU~2!
gauge theory coupled to adjoint fermions in 111 dimensions
can in fact be successfully reproduced in the light-front
framework. We have found a pair of~degenerate! physical
vacuum states, and a nonzero ‘‘chiral’’ condensate which is
sensitive to the vacuum physics. This vacuum structure de-
couples from the massive spectrum, however, consistent with
Ref. @16#.

Three ingredients are essential for obtaining this structure.
First, it is necessary to include a complete set of independent
degrees of freedom, that is, independent fields initialized on
two different null planes. The surfacex150 does not define
a Cauchy problem for the left-moving degrees of freedom.
For some purposes it may be possible to ignore this subtlety.
In the present case, for example, the physics of massive
states can be correctly recovered by ignoring the left movers
and zero modes. This is a feature peculiar to~111!-
dimensional gauge theories with massless matter, however
@16#. It is not expected to be true in more complicated theo-

4Note that use of the properly symmetrized solution~9.3! is cru-
cial for this to work.
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ries like QCD, where there is a strong coupling between
massless and massive states.

Second, it is important to pay close attention to the inter-
play between the gauge choice and boundary conditions.
Given the periodicity conditions we have imposed to regu-
late the theory, it is not possible to gauge all the zero modes
of Am to zero. Certain of these must be retained in the theory
and their properties determined. This situation is quite famil-
iar even in equal-time quantization, when one regulates with
equal-time periodicity conditions and attempts to impose a
spacelike axial gauge~see, e.g.,@33,34#!.

Finally, it is necessary to carefully define singular opera-
tor products in a gauge-invariant way. The resulting gauge
corrections toP6 are what allow certain states which contain
pairs of right- and left-moving quanta to actually be degen-
erate with the bare vacuum. Furthermore, the gauge correc-
tions to the current operators are crucial for determining the
gauge field zero modes, as well as for obtaining the correct
anomaly relation.

The vacuum states have a much simpler structure in the
light-front representation than at equal time.~This is also
true in the Schwinger model@11#.! However, the formulation
with periodicity conditions on the characteristic surfaces has
the property that some of the details of the operator products,
such as the condensate, do not approach their continuum
values as the periodicity length is taken to infinity. The de-
gree to which one may lose the ability to represent some
aspects of the physics in the discretized light-front approach
is not entirely understood. It would be very interesting to
have a more general understanding of this point.

It would also be of interest to extend this sort of construc-
tion to the case of massive fermions, where the vacuum
structure can play a more meaningful physical role. In the
massive Schwinger model, for example, the spectrum of

states depends on the vacuum angleu, a property shared by
QCD.

Finally, it will not have escaped the reader that the con-
struction we have presented relies to an uncomfortable de-
gree on trial and error. We know of no standard procedure,
analogous to the textbook treatment for equal-time field
theory, which leads directly to the correct dynamical opera-
tors. Instead, we start from the canonical expressions for
P6, discarding terms we do not know how to evaluate and
including gauge corrections arising from the renormalization
of singular operator products. Further modifications may be
necessary in response to checks of consistency, in particular
the replacement of troublesome operators with operators to
which they are weakly equivalent, i.e., equal in the physical
subspace. Of course, the definition of the physical subspace,
and hence which operators may be considered to be weakly
equivalent, itself depends on the form of the Poincare´ gen-
erators: these determine which Heisenberg equations are not
obtained directly as operator relations, and thereby fix the
conditions which must be satisfied by states in order for
these to hold in a weak sense. The procedure thus has an
unpleasantly circular character. It would be of great interest
to have a more straightforward formulation of light-front
field theory, particularly as the addition of further spacetime
dimensions, and the associated renormalization problems,
can only increase the difficulties.
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