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Vacuum structure of two-dimensional gauge theories on the light front

Gary McCartor
Department of Physics, Southern Methodist University, Dallas, Texas 75275

David G. Robertson and Stephen S. Pinsky
Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 9 December 1996

We discuss the problem of vacuum structure in light-front field theory in the contdgttdf)-dimensional
gauge theories. We begin by reviewing the known light-front solution of the Schwinger model, highlighting the
issues that are relevant for reproducing éhgtructure of the vacuum. The most important of these are the need
to introduce degrees of freedom initialized on two different null planes, the proper incorporation of gauge field
zero modes when periodicity conditions are used to regulate the infrared, and the importance of carefully
regulating singular operator products in a gauge-invariant way. We then consit@®r\&img-Mills theory in
1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge
group is actually S(2)/Z,, which possesses nontrivial topology. In particular, there are two topological sectors
and the physical vacuum state has a structure analogousétovacuum. We formulate the model using
periodicity conditions inx™ for infrared regulation, and consider a solution in which the gauge field zero mode
is treated as a constrained operator. We obtain the exp&etedcuum structure, and verify that the discrete
vacuum angle which enters has no effect on the spectrum of the theory. We then calculate the chiral conden-
sate, which is sensitive to the vacuum structure. The result is nonzero, but inversely proportional to the
periodicity length, a situation which is familiar from the Schwinger model. The origin of this behavior is
discussed[S0556-282(197)00414-]

PACS numbes): 11.10.Kk, 11.10.Ef, 11.15.Tk

I. INTRODUCTION detail for the Schwinger model ifil1] (see alsd12] for a
discussion in the bosonized contgxivhere it was shown
Light-front quantizatiorf1] has recently emerged as a po- that in order to obtain a theory that is isomorphic to the usual
tentially powerful tool for the nonperturbative study of quan- equal-time theory it is necessary to go beyond the conven-
tum field theorie§2]. The main advantage of this approach tional light-front approach. The main complication is the
is the apparent simplicity of the vacuum state, which leads tmeed to introduce degrees of freedom initialized along a sec-
major simplifications in the solution of the Hamiltonian ei- ond null plane, specifically a surface of constant In ad-
genvalue problem. Indeed, naive arguments suggest that tliition, it is important to properly treat the gauge field zero
physical vacuum is trivial on the light front. In many theories modes and to carefully define singular operator products in a
of interest, however, the structure of the vacuum plays amauge-invariant way.
important physical role, giving rise to, e.g., spontaneous Non-Abelian realizations of this sort of vacuum structure
symmetry breaking, confinement, vacuum angles, etc. It igre difficult to find in &1 dimensions, however, due to the
therefore necessary to understand how these phenomena daot thatlT,[ SU(N)] is trivial. A model which does exhibit a
occur in light-front field theory. sort of # vacuum is Yang-Mills theory coupled to fermions
These issues have recently been discussed in a variety if the adjoint representation. Since all fields transform ac-
contexts. If one regulates the infrared by imposing periodiccording to the adjoint representation, gauge transformations
or antiperiodic boundary conditions on some finite interval inthat differ by an element in the center of the gauge group
X~ [3,4], then any nontrivial vacuum structure must be con-represent the same transformation and so should be identi-
nected with thek” =0 Fourier modes of the fieldsStudies  fied. Thus the gauge group is actually $U(Z, , which has
of model field theories have shown that certain aspects afiontrivial topology:I1,[ SU(N)/Zy]=Zy. The model there-
vacuum physics can in fact be reproduced by a careful treafore possesses a-fold vacuum degeneracy, and there is a
ment of the field zero modes in this framework. For examplediscrete vacuum angle analogous to thearameter of QCD
it has been shown that solutions of the zero-mode constraifit.3,14]. In addition, forN=2 there is expected to be a non-
equation ing$, ; theory[3] exhibit spontaneous symmetry vanishing bilinear condensaf&5).
breaking[5-9]. In addition, certain topological features of = The goal of the present work is to understand how this
pure Yang-Mills theories in £1 dimensions have been suc- structure arises in the light-front framework. As we shall see,
cessfully reproducefil0]. if proper attention is paid to the subtleties of light-front
The focus of the present work is on structure of thequantization, then the expected features can all be correctly
#-vacuum type in gauge theories. This has been discussed ieproduced. In particular, foN=2 we shall explicitly ex-
hibit the Z, vacuum degeneracy and find a nonzero conden-
sate. In the light-front representation the vacuum states can
This follows from simple kinematical considerations. be described completely, unlike in the equal-time approach.
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However, the condensate we obtain is proportional to, 1/ wheref andg are arbitrary. Clearly, information along lines
where L is the periodicity length, and so vanishes in theof both constanx™ and x~ must be specified to obtain a
infinite-volume limit. This behavior is familiar from the general solution to the Dirac equation. If in the quantum
Schwinger model and may be traced to the infrared regulataheory we do not include degrees of freedom to represent all
we employ. We shall discuss these issues further below. of this freedom of the classical solution space, then the re-
Interestingly, for massless fermions the spectrumrmab-  sulting theory will be incomplete.
sive states of the adjoint model has recently been shown The proper light-front formulation of this theory involves
to be identical to that of(1+1)-dimensional Yang-Mills a pair of independent fieldsig, initialized onx™ =0, and
theory with multiple flavors of fundamental fermion6]. Y, initialized onx™=0. We regulate the infrared behavior
For this to be true it is necessary that the massive spectruly requiring thatyg, satisfy antiperiodic boundary condi-
be independent of the vacuum angle that enters in the conions in 0<x™<2L.? We can then Fourier expand the fields
struction of the physical ground state. We will show thison their respective initial-value surfaces:
explicitly. In fact, the only quantity which depends on the
vacuum angle is the chiral condensate, much like in the B 1 T
Schwinger model. Yr(0X ):an‘/z(b”e n® +dpetnt ),
We shall begin by reviewing the essentials of the light- -
front solution of the Schwinger model presented in Refs.

[

(2.9

[11]. This will serve to introduce the basic framework and to 1 o
highlight the issues that are central to the occurrence of non-  , (x* 0)= = > (Bne*”‘r?x++ 5§e”‘r7x+),
trivial vacuum structure in the light-front representation. We 2+%2Ln=1/2

then discuss the formulation of $2) gauge theory with ad- (2.9
joint fermions. We shall consider a formulation of the theory N .

in which the gauge field zero mode is treated as a constrainefhereky =nz/L and the sums are over odd half integers.
variable; a complementary formalism, in which the vacuumThroughout this paper we shall use lower-caseper-case
contains a dynamical zero mode content, is discussed in Reftters to denote indices that take odd half-integetege)
[17]. We show that this model possesses degenerate vacuuydlues. The canonical anticommutation relations are
states which we calculate explicitly. The physical ground
state is a superposition of these constructed to satisfy the
cluster property. Next we compute the condensate, the ex-

pectation value oW in this state, and briefly discuss the

1

{r(0X7), Y0y )} = ﬁrxx*—y*), 2.7

L dependence of the result. Finally, we touch on some unre- ; 1
solved issues and directions for future work. {¢L(X+,0),¢L(y+,0)}zﬁ5(X+—y+)- (2.9
Il. THE SCHWINGER MODEL These are realized by the Fock algebra

The Schwinger model is electrodynamics of massless fer-
mions in 4-1 dimensiond18]. The present discussion will
necessarily be rather telegraphic, as our aim is mainly to

highlight the issues that will be important later. For furtheryith all other anticommutators vanishing. The Fock space is

{b, ab:rn}:{dn vdL}:{ﬂn ,,3;}:{(% v5:n}: Smyn >
(2.9

details the reader is advised to congdlt]. _ generated by applying the various creation operators to a
To begin with, let us consider a free massless fermionyac,um staté0).
We shall employ the convention” = (x"+x")//2, and de- An important feature of this construction is that the dy-
compose the Fermi field in the usual way: namical operator®*, and in fact all conserved charges, re-
1 ceive contributions from both parts of the initial-value sur-
_ 0.+ face. This follows from very general considerati¢@g]. We
=— . 2.1
(/2 ﬁv YU 2D e
In 1+1 dimensiongonly) these are the same as chiral pro- P L
jections, so that Pr= 0 dx 6"+ 0 dx* O~ (219
_ ¥R _ 0 29 where the second term accounts for the energy momentum of
vi=\o) v : (2.2
h the left movers.

. , Let us now turn to the Schwinger model. The classical
Now, the need to include degrees of freedom on two d'ﬁer'l_agrangian density is g

ent lightlike lines can be seen immediately from the equation
of motion, which takes the form

9y hr=0_ =0, (2.3 2Note that in general the initial-value surface should be chosen so
as to contain no points that are separated by timelike intervals; in
whered. =3/ dx*. These have as their general solution such a case the commutation relations of the fields could not in
general be knowa priori. For a detailed discussion of these issues
Yr=F(x7), Y =9g(x"), (2.4  in the light-front context sefl9].
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1 - 1 singularity structure of the field$Egs. (2.7) and (2.8)].
L=ligy* o, p—i(d. ) y* 1= 7 FH'F L~ e, Evaluating the singularities in the operator products as
2.1 e*—0 we find

whereF ,,=d,A,—d,A, andJ*= ¢y*y. We shall impose JR=JR_ iv, (2.19
periodic boundary conditions ik~ on A, and choose the 2
gauged_A*=0. Note that the light-cone gauge’=0 is
not allowed in the presence of the nontrivial spatial topology Jt=JL— iA 2.19
[21]. ThusA*=v, a zero mode. To simplify the notation let 2w '
us further introduceA=A". The equations of motion then _
take the form where J* are the “naive” normal-ordered currents. It will
be useful to express these in terms of their Fourier modes
—-*A=el =eR, (2.12  (the so-called “fusion operatorg. We write
— - — L 0
d,0_A=elJ =el, (2.13 jR:% E CNe*“‘ﬁx_, 2.20
(9, +ieA)Pg=0, (2.14 N=
((9,+iel})lﬂ|_:0, (215) ':]"L:i E DNe—ikI?‘X+, (22])

2LNE

whereJR= 2yl andI-= 24 gy .

We should perhaps elaborate somewhat on the choice afhere the sums run over the integers. Ret 0 these are the
gauge. The gauge field is chosen to be periodixinbut  charge operators for the right and left movers,
satisfies no particular boundary condition . Thus the
gauge transformation required to bring an arbitrary configu- _ + +
rationA ,(x*,x~) to one satisfying’_A* =0 will in general Co_n;,z (bybn=dndn), (2.22
not be periodic inx™, and so will violate the boundary con-
dition we have imposed o#, . However, after such a trans- ”
formation we can apply a purel/" -dependent gauge trans- Do= _E (BRBa— 5060, (2.23
formation that restores the antiperiodicity ¢f at a single n=1z
value of x™, which we can choose to be the initial-value while for N>0 they are given by
surfacex™ =0. This does not affect the boundary conditions

[

satisfied by the other fields. To be precise, therefore, we - + + N 2
should say that we require that, be antiperiodic on its CN:n;m (bpbnn—dpdyn) + n;m dn—nbn,
initial-value surface only; it may not remain antiperiodic as it (2.24
evolves inx™. (Exactly what happens t@, is discovered by
solving its equation of motioh.This condition, and the con- o N-1/2
ditions imposed onyg andA,,, are then consistent with the D= > (B'Bnin—6880nsn)+ > On_nBn-
gauge choic&y_A"=0. n=1/2 n=1/2

Next let us discuss the definition of singular operator (2.29

products, as this is central to the issue of vacuum structurq:Or N<O0 they may be obtained by conjugation:
We define the current operators by a gauge-invariant point '

splitting: C_n=C{,, D_n=D}. (2.26
JROX7)=42 lim exp( —iefﬁéudx) They can be shown to satisfy the simple algebra
o ' [Cu .Ch]=[Du.Dnl=M3y . (229
X l/fEe(O,XJrf)tJ/R(O,X)—VEV}, We can now discuss the implementation of Gauss’ law,

Eqg. (2.12. Projected onto the normal-mode sectior x),
(2.16 this is a constraint which determines the normal modes of
A onx" =0 in the usual way. Projected onto the zero-mode

et i
JH(xT,00=12 lim exp( —iefX+ Adx*) sector we obtain
et =0 X O:CQ—ZR, (228)
Xyl (x*+€e",0) wL(xJ“,O)—VEV} where zg=evL/m. This can be interpreted in at least two
ways. One obvious possibility is to just use E&.28 to

(2.17 determinezy in terms of the charge operat@lthough there
is a subtlety that arises which we shall explain in a moment
Note that we must Sp”tl,b;gl,bR in the x~ direction and If we wish to treatzs as a dynamical field, however, then Eq.
¢I¢L in the x* direction. This follows from the canonical (2.28 cannot hold as an operator relation; it must be imple-



1038 McCARTOR, ROBERTSON, AND PINSKY 56

mented via restriction to some physical subspace. The priref constructingP= from this practical perspective: we start
cipal difficulty with this approach arises from the fact that from the canonical energy-momentum tensor, but modify it
zr is x* dependent whileC, is not. Thus the operator we as necessary in response to any problems of consistency
would like to use to select physical states does not commutehich arise. In the end we shall justify the final expressions
with the HamiltonianP ™, and the stability of the physical by showing that they satisfy all necessary criteria.

subspace is unclear. It is immediately obvious, for example, Let us first consideP ™. The relevant components of the
that the vanishing of the right-hand side of E8.28 cannot energy-momentum tensor, derived via the standard Noether
be imposed as an eigenvalue condition, if there are to bprocedure, are

eigenstates of the Hamiltonian in the physical subspace. It

may be possible to realize this condition in matrix elements O+ =i\2yti_yr, (2.32
between suitably defined physical states, however.
Here we shall interpret Eq2.28 as determiningzg in O~ t=—i2yLa, yr+e(IRA+IN). (2.33

terms of the charge. There is a subtlety in solving 228

as it stands, however. We shall see below #hashould not  Using the rule stated above the only contribution comes from
be taken to be a function afg, as this would lead to incon- © ", so that

sistencies in the Heisenberg equations. Anticipating that the oL

physical_subsp_acg of the Schwinger model will (_:onsist of P+:i\/§f del//TR&—de- (2.34
states with vanishingptal chargeCy+ Dy, let us rewrite Eq. 0

(2.28 in the form
The operator product that occurs is singular, however, and

0=Cy+Dy—Dy—2zg. (2.29  must be regulated. We shall again split the produckin
introducing an eikonal factor to maintain gauge invariance:

X X +e
eXp< —|ef - dyv)
X
which gives no conflict with the Heisenberg equations, and
what remains is the expected condition defining physical X¢§(x‘+e‘)&_ sz(x‘)—VEV}. (2.3
states. Thus the zero mode of Gauss’ law is interpreted as

determiningzg in terms of Dy, and giving the condition i ) .
Co+Do=0, which must be imposed as an eigenvalue con{Note that in some cases a symmetric splitting may be nec-

dition on the states. This construction may seem somewh&SSary to maintain the hernjiti?ity of the regulated opergtor.
ad hocbut in fact it can be justified by careful consideration Evaluating the singularity injrd_¢r as e”—0 we then

of the proper coupling of the gauge field to maftét]. The  obtain

situation is really the same as in classical electromagnetism.

We can then take

zg=—Dy, (2.30 Yo = lim

e —0

’ v
The zero mode o_f Ampere’s law, E€.13, may be ana- Pt =P/ — 22, (2.36
lyzed similarly, leading to 2L
z,=—Cy, (2.3)  where P4, is the free-particle momentum operator for the

right movers:

wherez, =ewl/7 andw is the zero mode of\, and the
same neutrality condition on the stat€,+Dy=0. + nw

Next let us construct the Poincagenerators*. As dis- Pfree:En: (T)[b;bﬁdzd“]' (2.37
cussed above, these are given as integrals of the appropriate
components of the energy-momentum tensor over botlt is now possible to see why it would be dangerous to have
pieces of the initial-value surface. If we work o@“" as  z. be a function of the right movers, througdy, for ex-
usual and try to evaluate E(.10, however, we encounter ample. The operatoP ™ should generate translations of
a difficulty: the integral ovex™ involves fields that are ini- in its initial-value surface via
tialized on the surface*=0. But we do not know these
fields as functions ok® until we have solved the theory. [Yr,PT]=i0_yg. (2.38
There is a simple way of dealing with this which works, at
least for the Schwinger model. We work o@t” as usual, But this is already accomplished .., and any additional
but include in the calculation oP* only those terms that terms inP™ should commute withj to avoid spoiling this
contain quantities we know on the different parts of therelation. This is what leads us to the modification of the

initial-value surface. zero-mode part of Gauss’ law discussed above, and to the
No proof exists of the correctness of this procedure, bugolution(2.30 for zg in terms ofD,. _
any alleged results foP~ can be checkea posteriorifor In fact, Eq.(2.30 is essentially forced on us by consider-

correctness, by verifying that they properly translate all théng the Heisenberg equation corresponding to@d.5. We
fields in x* and satisfy the Poincaralgebra. The same is must have

true of other operators, for example, the charges or the boost 1

generator—we can check in the end whether the expressions PH= —(zoth + U 2 23
we take are the correct ones. We will approach the problem [y, P1= 5 (ZriL 4120), (239
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or equivalently straightforward to check that this results in an equality, ex-
cept that the terms id" involving theD are not reproduced
[4L.zr]=— 4. (240 in the commutator. Thus Ampere’s law is only obtained in

) ) ) ) ] matrix elements between states that satisfy
This requirement, along withyr,zz]=0, essentially fixes

Zg 10 be given by Eq(2.30. ThusP* takes the final form Dyn|®)=0 (N>0), (2.45

This must be added to the conditions defining physical states.
This is a very important result, as it removes most of the

states with left-moving quanta from the physical subspace. In

Note the minus sign in front of the second term. This isfact, it can be showfl1] that theonly states with left mov-

crucial for the appearance of nontrivial vacuum structure, agrs that remain in the physical subspace are the states

it allows certain states containing left movers to be degener-

ar
P+=P;96—ZD§. (2.41)

ate with the Fock vacuurj0). IV =di_ 181 12 - - d1,581,0), (2.46
If we treatzg as dynamical, then Eq2.36) is actually
inconsistent as it stands. This is becgms,g th+e momentum IV_n)=bl 1081 -bl,60.0), (2.47
conjugate t@g, does not commute with thi8™. But it must
commute withP™, since it is itself a zero mode, i.e., inde- whereN=1,2, ..., andstates created by applying function-

pendent ofx~, and P* generates translations ocv. This  als of /5 to these. It is straightforward to check that these are

problem may be solved by modifyirg™, but it is interesting  all eigenstates oP~ with eigenvalue zero, so that they are

to note that a naive application of point splitting appears tadegenerate with the bare vacuum. The physical ground state

be inconsistent with treatingg as dynamical. of the theory is a superposition of these, which can be shown
The HamiltonianP~ can be constructed similarly. The to be necessary to satisfy the requirement of cluster decom-

only subtlety here involves the gauge correction of the sinposition:

gular operator product occurring in

6)= “INOIV ). 2.4
iﬁf:LdX*zﬂm. (2.42 )= Z . &M (248

] ] o o ] Thus we recover the expectetd structure of the physical
Because this product is split in the direction, the eikonal \acuum state in this model.
factor involvesA. But most ofA is unknown on the surfaceé  The full solution of the theory is straightforward given the
x~=0; its normal modes are constrained functionals Ofform of P~ We first verify that the states obtained by acting
¢r, determined by solving Gauss’ law. The solution to thisyith the Cy on |¢) span the physical subspace. We then
difficulty is to keep in the expression & only that part of  gefine creation and destruction operators from the positive
A that we do know ox™ =0, namely its zero mod€.31).  and negative frequend®y, respectively. Equatiof2.27) is
(That C is x* independent will be checked momentasily. then a bosonic canonical commutator and the Hamiltonian is

With this ansatz we arrive at diagonal. In the end we recover the well-known results that
- the physical states correspond to noninteracting bosons of
- p- T ~2 e’L 1 masse/ /7. In addition, there is a nonvanishing condensate
P™=Piec 5 Cot 52 2 | 12| CnCon, - _
TIN== (6| ip| ) with the correct dependence @h One can also

(2.43 check that the correct chiral anomaly is obtained. These and
other issues are discussed in detai[14].

Our goal in this section was to use the Schwinger model
to highlight the issues that will be important when we dis-
N cuss the non-AbeIian theory. The main lessons _tq .be' drawn

Proc= > (_) [BIBn+ 55,1 (2.44  concern the need to include degrees of freedom initialized on

L two different null planes, and the regulation of singular op-

erator products in a gauge-invariant way. In addition, we
It is clear that thisP~ commutes with Cy, so that must construct dynamical operators that are consistent with
3.Co=0 as promised. the equations of motion and initial conditions, and identify a

At this stage we have dynamical operators that correctlubspace in which those equations of motion that are not
translate all the fermionic degrees of freedonxin and are  satisfied as operator relations can hold. Finally, we must

consistent with the solutions we took for the zero modes of/erify that this physical subspace is stable under evolution in
the gauge field. Gauss’ law is also satisfied by constructiong*

The only issue that remains is whether or not Ampere’s law,
Eqg. (2.13, is satisfied.

This is straightforward to check. The zero mode of Am-
pere’s law reduces to the conditi&®y,+ Dy=0, which de-
fines the physical subspace. To check the normal mode part, Let us now consider S(@2) gauge theory coupled to mass-
we take the operatar_A obtained from solving Gauss’ law less adjoint fermions in +1 dimensions. The Lagrangian
and commute it withP~ to obtain itsx™ derivative. It is  density for the theory is

where the prime indicates that the term wiik=0 is omitted
and Py is the free energy of the left movers:

Ill. SU (2) GAUGE THEORY COUPLED TO ADJOINT
FERMIONS: BASICS
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[

Tyt =t °
2 (ozNef'kNx +aLe'kNX )+ o,

— 1 14 I Yy*D " 1
£== TR+ ST BL0. B g 0= =S
(3.10

where  D,=d,+ig[A,,] and F,,=d,A,—d,A,
+ig[A,,A,]. A convenient representation for thematrices

is y°=0? and y'=io!, whereo? are the Pauli matrices. b (x,0= ! > (B kX + 5Telkn "),
With this choice thgMajorana Fermi field may be taken to 2V4\[2Ln=0r
be Hermitian. (3.1

The matrix representation of the fields makes use of the -
fundamental S(2) generatorsr®= /2. It is convenient to where we have explicitly separated out the zero modes of

introduce a color helicity, or Cartan, basis, defined by Yri- As before, the lower-caseupper-casg indices run
over positive half-odd integeréintegers and k, =n/L.

The Fourier modes obey the algebra

* __ l 145
TR 2 alaw=laf a=duy. (12
with 7° unchanged. These satisfy (bl bt={d! dt=1{Bl,Bm=1{6",8mt=nm
[r5,7 1=, 3.3 (3.13
[, ]=%=71". (3.9 {¥r, ) ={t0 :&L}:ﬁ: (3.19

Lower helicity indices are defined by.=7", and matrix-

) with all mixed anticommutators vanishing. These are equiva-
valued fields are decomposed as, for example,

lent to the canonical anti-commutation relations
AF=AEP+ AT+ AR T, (3.5 1
{PR(0X7), Tr(0y )= —Zé(x‘ -y7), (3.19

5

where A% *=(A4+iA4)/2 and A““=A%. [Note also
that (A*)T=A* ] The Fermi field will be written as

1
\I,R/L:l,bR/L’TS‘i‘ ¢R/LT++¢;IL7-7’ (36) {‘I,L(X+,0),WL(y+,O)}:E&(X+_y+). (31®

—(wl w2 "
wheredg, = (Wi —i W)/ V2 and the label®/L indicate  The fermionic Fock space is generated by acting with the

light-front spinor projectiong as given in _E(_2.2). Note that  \5rious creation operators on a vacuum sf@je
under a gauge transformation the Fermi field transforms ac- gq, simplicity, in the remainder of this paper we shall

cording to discard the zero modes gk, . It can be shown that includ-
ing them does not qualitatively affect any of our results; they
merely complicate parts of the analysis. In addition, their
physical meaning is somewhat ambiguous. For example,
they lead to a nonvanishing fermion condensate even in free
field theory. This same phenomenon was observed in the
TIPS A 3 ! equal-time context in Ref.22]. We shall therefore simply
be taken to be antiperiodic i andx”, respectively. It will oy cjude them from the model: the condensate we obtain is
be conve@ent, however, to taki; andyy_to be periodic i hen entirely an effect of the interaction. Note that this trun-
X~ andx™, respectively(“twisted” boundary conditions  cation does not lead to inconsistencies in the model. For
The reasons for this will become clear as we Progre§5-_F0éxample, the Heisenberg equations fgg, will simply re-
consistency, thend’ must be taken to be antiperiodic in gyce to the appropriate Euler-Lagrange equations with the
X, while Ag is periodic. In all cases the periodicity Iength is zero modes removed. In addition, the Poiﬁcafgebra is

2L. unaffected.
The Fock representation for the fermionic degrees of free- The current operators for this theory are

dom is obtained by Fourier expandingg on x*=0 and

Ve =U¥g U (3.7

whereU is a spacetime-dependent element of( U
We shall regulate the theory in the infrared by imposing
certain boundary conditions . The fields¢r and ¢, will

¥ onx =0.We have T 1
Jr=J :_E[WRa\PR]a (3.1
R e e
0x7)=——-—=2> (aye ¥ +ale*n* )+ g,
YR(0X7) MZN;( N Ne ) + g o
(3.9 J =J=- E[\PL L. (3.18
1 - ot — o — P ; :
0xX )= b.e kn X +dlefka X7y, To avoid confusion, we shall henceforth always write the
Pr(0X7) 21/4\/Zn:21/2( " . ) currents withR or L in place of the upper Lorentz index.

(3.9 These expressions are ill defined as they stand since they



56 VACUUM STRUCTURE OF TWO-DIMENSIONAL GAUGE ... 1041

contain products of operators at the same point. This is a In terms of the Fock operators we have, fom>0,
common problem and occurs in the expressions for the Poin-

care generators as well. We shall regulate these by point 3 - t + N2
splitting, introducing an eikonal factor to maintain gauge in- CN:n;m (bpbn+n—dndnn) = n;/z Bndn-n,
variance, and then taking the splitting to zero after removing (3.28
the divergences. One can show, for example, that
s el n-1
+ ek + T _ t _
X

(3.29
X+ e
Xexp(—igf A-dx i * n-1
X Cr:: 2 d:nan-#m_ 2 a;\r/IbM+n_ E a-n—mbm-
m=1/2 M=1 m=1/2

transforms covariantly in the adjoint representation. In the (3.30
limit of small e* one effectively replaces

Y (X) (3.19

_ We may obtain the modes fa¥,n<0 from the above by
V(X)W (x+e*)+ig[A-€,V(x+e*)]. (3.20  Hermitian conjugation:

The singularity in the Fermi operator productas 0 picks ciy=(CdHf, cr =)', cZ,=ccH

up thee in the above expression leaving an additional con- (3.31)
tribution. The splitting must be performed in the direction

for ¥ and in thex* direction for¥ . A straightforward Finally, Cg is just the three-color charge in the right-moving

calculation gives fermions:
~ g
JR=JR=- = AT, (3.21) Ci= 2 (b/b,—d!d,). (3.32
L7t g A (3.22 In the Cartan basis, the Kac-Moody algebra takes the form
B 20 ' 3 3
[CR,Cm]=Nby -m, (3.33
where IR are the naive normal ordered currents. P
In the helicity basis the components @R take the forms [Cn Cm]=0, (3.34
. 1 R [CR.Crml=*C{im. (3.39
J5=: S (drdr— drdR):, (323 L
[Ch .Cnl=ChimtNdy . (3.39
SR_. 1 It is straightforward to verify these relations using the fun-

Tty
\/§(¢R¢R_ r¥R):S (3.24 damental anticommutator&3.12 and (3.13. The algebra
satisfied by theéD’s is of course identical.

~ 1
JR=: T(¢R¢/R— YrOR):. (3.25 IV. ZERO MODES AND GAUGE FIXING
2

The main subtlety arising from the use of discretization as

The corresponding expressions for the components-afre & regulator is in fixing the gauge. It is most convenient in

identical, with R—L. It is convenient to Fourier expand Iig+ht-fr0nt field theory to choose the light-cone gauge

these currents and discuss the properties of their componenty. =0. However, this is not possible with the boundary con-

We write ditions we have imposed; since gauge transformations must
be periodic up to an element of the center of the gauge group
_ 1 = o (hereZ,), we cannot gauge the zero mode &f to zero

JR’aZZ >, CRe '™t (3.26  [21]. It is permissible to také_A* =0, as in the Schwinger

N=—= model. Having made that choice, there are two issues which
o arise involving the zero modes of the gauge field.

‘:]'L,a:i Z Dag-imNx"/L (3.27) The first issue is whether the zero modes should be treated
PN ' as independent degrees of freedom or as constrained func-

tionals of the Fermi fields. In the equal-time representation
wherea is a color index and the sums run over integers forthis can usually be resolved on the basis of whether or not
a=3 and half-odd integers faa= = . It is well known that  the Lagrangian gives a conjugate momentum for the operator
the Fourier components satisfy a Kac-Moody algebra within question. In the light-front representation the issue is more
level two [23]. We shall discuss this explicitly for th€3 ; complex; in the Schwinger model, for example, the zero
with appropriate substitutions an identical set of relationsmodes of the gauge fields are constrained even though the
holds for theD§,. Lagrangian provides a conjugate momentum.
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Some of the difficulties in treating the zero mo#lé as a  Instead we will retain this zero mode, which we oall and
degree of freedom were mentioned in Sec. Il. They ariseletermine it in the solution of the equations of motion.
principally because of Eq2.28), which cannot hold as an It is useful to introduce a set of transformations which are
operator relation. Imposing it as a condition on states idormally the “large” gauge transformations which connect
somewhat delicate, however, since the stability of the physidifferent Gribov regiong27]. We shall denote these b'l;}ﬁ
cal subspace is not obvious. These and other aspects of tagd Tk , with N any integer:
formulation with a dynamical zero mode are discussed in

Ref.[17]. Here we shall avoid this difficulty by considering R iN7T

a formulation in which the zero mode is constrained. Th=exp = X 73/, (4.2
In addition,A* enters the operatd®”* if we compute the

Poincaregenerators according to the usual prescription. But L iN 7

if A* is dynamical, then the resultirg* does not commute TN:eXF{TXJr 73| (4.3

with the momentum conjugate t&*. This difficulty can
perhaps be resolved by replacing the troublesome terms in is convenient to define the dimensionless variables

P* with operators to which they are weakly equivalérg., zz=gvL/m andz =gwlL/#, which TE’L shifts by = N:
equal in the physical subspacélote that we must apply this

procedure in the constrained case as well. If in the Schwinger TRZR(TR) 1=2g+N, (4.4
model we had takezg to be a functional ofyr (possibly
along with other thingswe would have found an immediate Thz (TR) "*=z —N. (4.5

contradiction between our definitions and the Heisenberg

equations. Such a solution would be inconsistent even pridin addition, TY'" generates a spacetime-dependent phase ro-
to any dynamical considerations. That is why in thetation on the matter fieldbg, ,

Schwinger modeky, is taken to be a functional of, (al-

though there are other ways to reach the same conclusion TROR(TR) 1= N™ TLgp, (4.6)
The non-Abelian case turns out to be even more compli- o
cated, as we shall see. TR (TR) t=eN™ Ly, 4.7

The second issue involving the zero modes is the question
of how to accomplish the residual gauge fixing using con-which however preserves the boundary conditionspap .
stant(in x*) color matrices. In the equal-time representation,Note that forTR" to be a symmetry of the theory, the solu-
it is convenient to rotate the zero modes/of so that only  tions for zg, in terms of the Fermi fields must correctly
the color 3 component is nonzero. Here we shall mostly bageproduce Eqs(4.4) and (4.5 under the transformations
interested in the case where the zero modes of the gauge field.6) and (4.7). This will turn out to be the case.
are treated as constrained. In this case, since we should fix The theory is also invariant under the so-called Weyl
the gauge in terms of the degrees of freedom and let thgransformation, denote®®. This is also formally a gauge
constraint equations determine the constrained variables, weansformation, and takes
should proceed in a different way. The natural thing would

presumably be to use the residual gauge freedom to rotate Rz R 1=—2zgyL, (4.8
two components of the vector current to zero; probably that ot
is the choice most nearly equivalent to rotating the gauge Rori R "= dgy - 4.9

field zero modes in the equal-time representation. The prob- _ RIL .
lem is that this approach is technically difficult to implement. ~ 1he action ofT;"" andR on the fermion Fock operators
The Dirac-Bergmann procedure leads to a complicated norf&" be determined easily from Eqg.6), (4.7), and (4.9).
linear relation between the Fermi modes, due to the fact that1 dives rise to a spectral flow for the right-handed particles,
the current is bilocal in the Fermi fields. A procedure which R Ri—1_

is very similar to the suggested gauge fixing, but is much Tiba(T1) "=bp-q, (n>1/2),
simpler to carry out, is to use twisted boundary conditions
for the Fermi field§24,25 as we do here. Presumably the
results of the Dirac-Bergmann procedure would be much the R Rio1_ At
same if we were able to carry it out, but we have no proof of T1by(T7) ™" =dyp,
this. With these boundary conditions, the color 1 and 2 com- .~ _, :
ponents of the gauge field must also be antiperiodiain Whllg T; gives rise to a spectral flow for the left-handed
and simply have no zero modes. Thus whether or not w@2rticles,

treat the zero modes @ as constrained, we have Teo (T 1=6, 1, (n>1/2),

TR (TR " =dps1, (4.10

AT =p(x") 73, (4.2) TIB(TD) " 1=Bni1, (4.11

TLoATH 1= B1,.
with v independent ok ~. As we shall see, in the constrained 101AT1) P
casev turns out to be independent ®f as well. The action ofR is analogous to charge conjugation,
While one could simultaneously rotafe =A so that it
has no color 3 zero modd0,26], we shall not do that here. Rb,R 1=—d,, (4.12
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RB.R™'=—4,. 413  9,[(9_*igv)A.]

The ay and ey are invariant under botAY" andR. From +ig[As(d_*igv)A. —A.d_As]=gli. (5.9
the behavior of the Fock operators it is straightforward to
deduce the behavior of the elements of the Kac-Moody algeThese latter relations will require particularly careful consid-
bra undefT¥" andR, and show that the algebra is invariant. eration, as they explicitly connect left- and right-handed
It is also convenient to introduce a set of stal¥g), guantities. In particular we will findas in the Schwinger
whereM is any integer, which are related to one another bymode) that some of these equations can only be satisfied in
T\ =TRT, transformations. The Fock vacuu@) is defined & subspace of the full Hilbert space of the theory. This sub-
to be|V,), and space will be defined to be the physical one.
The current operators appearing in E¢5.5—(5.8) in-
IViy=(T)M| Vo), (4.14  clude the gauge corrections computed in £8321). Because
of the gauge choice and the twisted boundary conditions,

with (T;) ~'=T_. Itis straightforward to determine the par- however, the corrections to the coldar components ofiR
ticle content of thgVy,) from the properties of th&; trans-  vanish.

formation[28]. One finds We shall discuss the implementation of the Dirac equation
ot + P and Ampere’s law below; for the moment let us consider the
V) =dN- 1280172 - - 1128120, (419 solution of Egs.(5.5 and (5.6). As is usual in light-front
. ‘ M- field theory, these relations mainly serve to determine the
Vo) = 0N 1N 1727 61/01/200), (4160 field A onx* =0 in terms of the dynamical degrees of free-

dom. Note that in the gauge we have chosen, Gauss’ law
separates and its individual components can be solved di-
rectly; this is the motivation for introducing the color helicity

for N=0. These states are thus analogous to the *“
vacua” (2.46 and(2.47) found in the Schwinger model.
The operatoR satisfiesR?=1, so that its action on the

. basis.
Fock vacuum may be defined to be Equation (5.5 can be solved immediately to obtain the
R|0)=0). 4.17 normal mode part oA; onx*=0:

Along with Egs.(4.12 and (4.13), this choice defines the gL ' Cﬁ, —iNaxTIL

action ofR on all states. Without loss of generality we may As(0x)= ﬁN;@ nNZ° ' 5.9

take the plus sign in Eq4.17. ThenR interchangegVy)

and|V_y): The zero mode ofA; is not determined by Eq5.5. We
shall return to this problem in a moment, but for now note

RV =(—D)NV_p). (4.18 that since there is no zero mode on the left-hand side of Eq.

(5.5), the zero mode of the right-hand side must also vanish.
The factor (1)N arises from the different ordering of the This gives

left- and right-moving creation operators in E¢4.15 and
(4.16. 0=C3-zz. (5.10

V. EQUATIONS OF MOTION This_ relation determinegg in terms of a charg_e operator,
. . _ _ _ subject to the same caveat we had in the Schwinger model: it
It is straightforward to derive the equations of motion for is inconsistent to takeg to be an operator involving right-
the theory in the gauge we have chosen. In the color helicitynoving fermions. We shall therefore rewrite E&.10 in

basis the Dirac equation separates into the form
d_y =0, (5.1 0=C3+D3-D3-zR, (5.19
d_p =—iguo, (5.2 and take
9+ hr=19[A_dr—A. B7], (53 zg=—Dg. (5.12
9. dr=19[A. yr—Azdr]. (5.4) ngr?t remains of the three-color component of Gauss’ law is
In addition we have Gauss’ law, 3 3
— 2 As=gJ3, (5.5 . . . y .
which can be imposed as an eigenvalue condition defining
—(9_*igv)?A.=gJk, (5.6) physical states.
- - Now let us consider Eq5.6). Inserting the operator so-
and Ampere’s law, lution (5.12) for zg this becomes

i

L

d+d_Az+ig[AL(d_—igv)A_—A_(d_+igv)A ]=0J;,

2
7 Dg) A.=gJ%. (5.14

_(5_1
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The choice of twisted boundary conditions results in the co- N7 : :
variant derivatives having no zero eigenvalues, so they can P"= EO ( 3 alan+ 2 ( )[b bn+dndp]
be inverted to give N>
T
S Ca - — 5 (D9)? (6.7)
inTx~ /L 2L
A (0x7)= ; (n+D )2e . (5.19

when Eq.(5.12 is used. This expression will be tested fur-

ther for consistency below and found to be satisfactory.
Next let us discus$ ™. The left-moving contribution is
As discussed previously, the PoincayeneratorP™ re-  given by

ceive contributions from both parts of the initial-value sur-

VI. POINCARE GENERATORS

face[Eq. (2.10]. We shall denote the contributions coming P =i ﬁfZde+Tr(qua+‘PL). 6.9
from integrating overx*=0 andx~ =0 by Pz and P, 0
respectively.

It is straightforward to work out the energy-momentum 'NiS operator product is singular, and is regulated by a
tensor following the usual Noether procedure. We obtairff@uge-corrected splitting k*. We find

(with 9_A*=0) -
PL= n* Oh0n
O =—2TH(F* 9,A")~Tr(F*F*") L NZO( L )“N"‘N+2 ( )[B Bt Ondn]
i 9 (2t + 2
+ —=TIVrd Vr— (9" VYR)VR], (6.1 “ 27l dx Tr(A%). (6.9

2
_ _ _ o Again, we do not know most oA on the surfacex™ =0 so
+_ + _ + + ,
© "=-2THF""d_A")—Tr(F""F"") we keep only the part we do know on that surface. This will
turn out to be the zero mode @é§, which will be shown to

+ I—Tr[‘lfLaﬂlfL—(aW/L)qu], (6.2  bex" independent. Thus we have

J2
B N
i PL:NZO( L )aNaN+E ( [B ﬂn"_‘sT ]_
Ot =—Tr{Vro"Vr— (0" VR)V¥R], 6.3
\/E (Vg R ( RV W] (6.3 (6_10)
The contribution from the surface™ =0 has the standard
i - - P form one expects, i1+ 1)-dimensional YM theory coupled

N
(6.9 2L 1

Pr=—02 dx‘Tr(J+—2—J+>. (6.12
As in the Schwinger model, these lead to expressions we 0 D=

cannot evaluate: they involve integrals of fields on surfaces
where we do not know them. We will follow the rule dis- None of these operator products are singular so evaluating

cussed previously, and simply drop the terms we do nothis expression is _stralghtforward The_result is most el-
know how to calculate. In the end we shall justify our results€9antly expressed in terms of this. We find
by showing that they correctly translate all fields and satisfy

7 2 o]
the Poincarelgebra. PFe:g—Lz S %CﬁC"iN
First let us construd® . Using the rule of dropping terms A n=== N
we do not know how to calculate, we obtain .
1 _
2L 2 —Dg)—{c —n} . (6.12)
Pt =i ﬁf dX TrH(Wra_Pp). (6.5 =

0

There is a problem with this expression, however. The
The operator product in this expression is singular and represence oD3 in Py is in conflict with the (kinematica)
quires regularization and renormalization. This is accomHeisenberg equation fap, . We should have
plished as before by splitting the productxn, introducing
an appropriate exponential factor to maintain gauge invari- —i[pL(x",0),P ]=0d, ¢ (x",0), (6.13
ance. We find

Pr=>

N>0

which is already accomplished by the free parPgf. Since

[#.,D3]= ¢, the interaction terms iP5 spoil Eq.(6.13.

afian+ 2 (T) [blb,+did =50 ZRa To cure this problem we can simply modiBg by replacing
(6.6) DS with an operator that is equal to it in the physical sub-
space. The natural thing to try is the substitution

which leads to D8—>—C3, motivated by Eq.5.13. This is potentially in

N
L
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conflict with the Dirac equation fopz, however. Before the which again must be realized in matrix elements between
substitution we obtained the correct commutatorpafwith physical states. To see that H§.19 is in fact satisfied in
P~, but afterwards the fact thithg,C3]#0 leads to a new the physical subspace, let us discuss the physical states in
and unwanted term ifigg,P " ]: more detail. These will be obtained by acting with gauge-
invariant operators built from the right-handed fields on the
g2L physical vacuum statg)):3

[6r.P71= 522 {CarClab -,

(6.19
. Now, the transformatioR is a symmetry of the theory, as is
where the dots represent the terms we had originally. Novkasily verified from the expressions fBF . Without loss of
this extra term can be shown to vanish in matrix elementgenerality we may choose the vacuum to be an eigenstate of

between states satisfying E(.13, but this happens for a g yith eigenvaluet 1. Since a gauge-invariant operator is in
fairly trivial reason: it is a colored operator and the physical

> e : articular invariant undeR,
states are required to be colorless. A less trivial check is tg
consider the commutator of a colorless operator such as ROR=0), (6.21)
¢E¢R with our newP ™. In fact the commutator of this op-
erator also reduces, in the subspace defined byE#J), to it follows that all physical states are also eigenstate® of
what we obtain from the Dirac equation, so the modifiedwith eigenvalue+1. ButP is odd underR,
P~ appears to be consistent. Presumably one wants all rela-
tions derivable from the equations of motion to be recovered RPR=—P, (6.22
in the physical subspace. It would be helpful to have a more

detailed understanding of this point, as well as the extent tgnd therefore me_ltrlx elements Bf between physical states
are zero as required.

which Eq.(6.12 satisfies the necessary conditions. ! : . .
b ’ 3 . 3 The final result is that it appears to be consistent to take
Equations(6.7), (6.10, and(6.12, with Dj— —Cg, are P+ as given in Eq(6.7) and

our trial forms for P=. Our next task is to check whether

1
bR, =332
R (n+Cp)? |®)=0]Q). (6.20

these correctly reproduce the Dirac equation and Ampere’s N N
law for this theory. This is a straightforward exercise in com- P = (T) Tan+ > (T) [B!B.+ 81 64]
muting fields withP* and comparing the results with the N=0 n>0
corresponding equations of motion. 2 o
. . . e ™ gL , 1
It turns out that the Dirac equation fai, is satisfied if - —(CH?+-— X' HC3cd,
2L 47 2. N
z,=-C3, (6.19 -
o
which we shall take to be a strorfgperatoy equality. This +n:200 (n+C3)2{C” Conk | ©.23
determines the zero mode Af, which we were not able to
fix using Gauss’ law. Note that; commutes withP~, and  Physical states have vanishing color 3 charge,
so isx* independent as promised.
Next, Ampere’s law is satisfied if (C3+Dy)|®)=0, (6.29
Dﬁ,:Dﬁ:O. (6.16 and satisfy Eq(6.17). One can check that the operators that

annihilate physical states commute witi andP~, so the

These conditions must be realized weakly, in matrix eIePhXS'Cﬁl subspace is stable. It can also be shown that
ments between states. We shall require physical states {6 P~ 1=0, as required.
satisfy

VIl. AXIAL ANOMALY

3 _
D[®)=0 (N>0), (6.1 As a further check of the formulation, let us now discuss

the axial anomaly in this theory. We shall focus on the color

in analogy with the Schwinger model. Note, however, that3 part of the currents, for which the anomaly relation reads

because
+ + g
[(C3+D3),Dy]==D, (6.18 aMngfﬂ:EewFiV_ (7.
[see Eq.3.35], matrix elements oD, between states that In 1+1 dimensions the axial current
satisfy Eq.(5.13 are automatically zero. It is therefore not Jg:_[q,’yﬂysq,]/\/ﬁ is related to the vector curregt:
necessary to impose the conditior ~0 separately. through J&=(JR,—J%). In addition, it can be shown that

Finally, the zero mode of the color 3 component of Am-
pere’s law reduces to

1 3Conditions(6.17) remove from the physical subspace any states
P= ——Ict.c-'=0, 6.1 with a left-handed particle content beyond what is present in the
; (c3+ n)3{ n ol .19 vacuum.
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covariant derivatives reduce to partial derivatives J6f so * _

the conservation equations below take the Abelian form for R|6)= > e INo(— DHNV_\)

the matter currents. N=-
To check Eq(7.1) we first calculatehJ? from

_ INCGO=m)[\/ ) 8.3
I[P~ 35001= 0, 3500, 7.2 2, NI ®3

Using This is equal to|#) up to a phase only fov=*=/2. We
therefore have a pair of distinct physical vacuum states la-
~R =R 3 i L beled by a discrete vacuum angle. We shall refer to these
[‘J3(01X )=J3(Ovy )]:E(S (X -y ) (73) physica| vacua amt>_

We have here motivated the formation of the superposi-
we find tion (8.1) as a way of resolving the residudhrge gauge
invariance of the theory. It is presumably also necessary to
build the theory on a vacuum of this form in order to satisfy
the cluster property, as in the Schwinger model. To verify
this explicitly for the present model, however, we would
where we have chosen to evaluate the currents at 0, need to do a more complete dynamical calculation.
Similarly, we can computé_J5 by commuting it withP ™. Let us now consider whether this vacuum structure has

Sincejg is independent ok~ by the equations of motion, 2" affect on the spectrum of the theory, that is, whether the

the only contribution comes from the gauge correction toSPECtrUM depends on the vacuum angte= w/2. Consider
Jg. Thus we find calculating a matrix element ¢*~ between any two physi-

cal states:

9, I%0x7)= %a_A3(0,x‘), (7.4

_ g _ Sl
9_J5(0x )= = 5 -9-Ay(0X7). (7.5 (Q.|O0"(PR+P)O|Q.), (8.4)
where© and O’ are gauge-invariant operators constructed

Combining these results we then obtain from the right-handed fields. Sindg commutes with these

J,d= {9+J§+ (9735 it simply passes through to act on the vacuum, where it gives
g zero. In addition, since® and O’ contain no left-handed
=0 (7.6) fields, the left-handed particles in the vacuum serve to ‘“di-
d agonalize” the matrix element between the differgvy ):
an
QO |O'PROIO )= VNO'PROIVN). (8.
&MJg’“=&+J§—&_J§=%&_A3 (Q.|0"PROI) sz_w< nO'PROIVy). (8.5
g Now O and O’ are invariant undefl,, and furthermore it
= EGWFiV’ (7.7 can be shown that

— _1_ —
as expected. The formulation of the theory therefore appears TiPrT, =Pg. (8.6

to be satisfactory, and we can now study the structure of the . —17 N
ground state. Inserting factors of T; "T1)" between the states and opera-

tors we therefore find

It is straightforward to verify that the stat¢¥,) are all
degeneratéthey haveP* =P~ =0) and lie in the physical All the matrix elements on the right-hand side of €§.5
subspace. The physical vacuum states will thus be approprre thus identical, and so
ate superpositions of these, constructed tqdtese invari-

ant under the residudl; andR symmetries. (Q4|O0"PROIQ.L)=(Vo|O'PRO|Vy), (8.8
The most general superposition consistent wWithinvari- o o
ance is simply up to the(infinite) normalization factor necessary for the

state|)..). Finally, we note tha€3|V,)=0, so that we may
< _ repIaceCS by zero in the expression fd? . The resulting
|6)= N;w e Nvy), (8.)  pg is simply the usual discrete light-cone quantizBiLCQ)
Hamiltonian for this theory, that is, with the zero modes
which satisfies discarded. The final result is that matrix elements of the
Hamiltonian in the full theory are equal to those we would
T, 6)=¢€"Y6). (8.2 obtain by taking the trivial Fock vacuuiV,) and ignoring
the zero modes. Thus the standard DLCQ procedure gives
Acting with the Weyl transformatioR then gives the correct spectrum for this theory.
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We should perhaps emphasize that in more complicatedured by forcibly parity symmetrizing the theory after it has
theories, such as QCD, the analogous result will certainly nobeen solved. In the present example this sort of approach
hold. In that case there are physical quantities that do dependay not be practical, since the model is not analytically
on the vacuum angl®, and it will not be possible to cor- soluble.
rectly reproduce these by neglecting the vacuum structure. As discussed previously, the condensate, or more pre-

cisely the presence of nontrivial vacuum structure, has no
IX. THE CONDENSATE effect on the mass spectrum of the theory. This result is in
accordance with recent work of Kutasov and Schwimmer

It is generally believed that Y, ; coupled to adjoint [16], who claim that there are classes of two-dimensional
fermions develops a condensde=(Q|Tr(¥¥)|Q). Thus YM theories which have the same massive spectrum. A nec
far 2, has been calculated in the larbelimit [29] and in the  essary condition for this universality is the decoupling of the
small-volume limit for SWY2) using equal-time quantization masslesgvacuun) and massive sectors. Our construction ex-
[30]. A condensate was also computed in a chiral version ohibits this directly. In particular, the massive spectrum may
this theory containing only right-handed fermiof28]. In be obtained by neglecting the vacuum structure and gauge
that calculation it was the field itself which acquired afield zero modes, that is, by applying the naive light-front
vacuum expectation value and the result was fundamentallformalism. In addition, the only left-moving quanta that en-

different from what we are considering here. ter physical states reside in the vacuum; the physical excita-
It is straightforward to comput® in the vacuun{8.1). To  tions are built entirely from the right movers.
be specific, we shall evaluat® at the spacetime point It would be interesting to study whether the spectrum de-
(0x7). The terms in TrPV) that can contribute to the Pends on the vacuum angle when a fermion mass is turned
vacuum expectation value are on, as, for example, occurs in the massive Schwinger model.
At present we have nothing definite to say on this question,
TH(PW)=i(¢] pr— prp )+ -+ -. (9.1  although the condensakedoes arise in at least one interest-

ing context in the massive theory. It has been shown recently
These operator products are not singular, so point splitting i¢hat two-dimensional gauge theories with massless fermions
not required. can screen “fractional” test charges—charges in representa-
The field px(0x ") is just given by its initial valug3.9),  tions of the gauge group that are smaller than the one carried
of course. To obtaimp, at (0x~) we must solve its equation by the dynamical fermions in the theof$2]. Thus, for ex-
of motion, i.e., Eq(5.2), with the noncommuting factors on ample, in the theory with adjoint fermions the fundamental
the RHS symmetrized: Wilson loop exhibits a perimeter-law behavior. When the
dynamical fermions are given a mass, however, the

i screening disappears and fractional charges are confined,
_ 3 3
§*¢L_Z(DO¢L+ $.Do). 92 with a string tension

Integrating this givesgp, (0,x ) in terms of its initial value at o=2m3,. (9.5
the corner point (0,0):

B —— — It is unclear whether this has implications for the question of
$L(0x7)=e'"™ Z0 ¢ (0,0€'™ 0. (9.3 whether the spectrum of the theory with massive fermions

. . . itself is affected by the condensdi@2].
With these results it is straightforward to evaluate the con-

densate; we find
X. CONCLUSIONS

i _ (9.4) We have shown that th&, vacuum structure of S@)
\/EL gauge theory coupled to adjoint fermions it 1 dimensions
can in fact be successfully reproduced in the light-front
Note that the result is independent xf, as it should be. framework. We have found a pair ¢flegeneratephysical
This happens because the exponential factors in(2@)  vacuum states, and a nonzero “chiral” condensate which is
acting on thgVy) exactly compensate the exponentials fromsensitive to the vacuum physics. This vacuum structure de-
the field expansiori3.9).* In addition, however, the conden- couples from the massive spectrum, however, consistent with
sate is proportional to I/ and so vanishes in the continuum Ref.[16].
limit. Three ingredients are essential for obtaining this structure.
This type of behavior is also found in the light-front ver- First, it is necessary to include a complete set of independent
sion of the Schwinger model discussed ii]. In that case degrees of freedom, that is, independent fields initialized on
the 1L behavior can be traced to the crude treatment of thewo different null planes. The surfacg =0 does not define
smallp™ region—in particular the violation of parity—that a Cauchy problem for the left-moving degrees of freedom.
results when periodicity conditions are imposed on nullFor some purposes it may be possible to ignore this subtlety.
planes[31]. In the Schwinger model the problem can beln the present case, for example, the physics of massive
states can be correctly recovered by ignoring the left movers
and zero modes. This is a feature peculiar (fo+1)-
“Note that use of the properly symmetrized solut{t8) is cru-  dimensional gauge theories with massless matter, however
cial for this to work. [16]. It is not expected to be true in more complicated theo-

Q[T W), )=+
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ries like QCD, where there is a strong coupling betweerstates depends on the vacuum angjl@ property shared by
massless and massive states. QCD.

Second, it is important to pay close attention to the inter- Finally, it will not have escaped the reader that the con-
play between the gauge choice and boundary conditionstruction we have presented relies to an uncomfortable de-
Given the periodicity conditions we have imposed to regu-gree on trial and error. We know of no standard procedure,
late the theory, it is not possible to gauge all the zero modednalogous to the textbook treatment for equal-time field
of A,, to zero. Certain of these must be retained in the theoryneory, which leads directly to the correct dynamical opera-

and their properties determined. This situation is quite familL0rS. Instead, we start from the canonical expressions for
iar even in equal-time quantization, when one regulates witt{ + discarding terms we do not know how to evaluate and

equal-time periodicity conditions and attempts to impose a''cluding gauge corrections arising from the renormalization
spacelike axial gaugesee, e.g.[33,34) of singular operator products. Further modifications may be

Finally, it is necessary to carefully define singular Opera_necessary in response to checks of consistency, in particular
tor products in a gauge-invariant way. The resulting gaugéhe. replacement of trouble§ome operators W!th operators to
corrections td®* are what allow certain states which contain which they are weakly eq“"’a?'e_’?t’ .e., equal in the physical
pairs of right- and left-moving quanta to actually be degen_subspace. Of course, the definition of the_ physical subspace,
erate with the bare vacuum. Furthermore, the gauge corre@—nd.helnu: Y\t’h'clfh doperaéors mgahy bfe cons%lctiﬁreg o be weakly
tions to the current operators are crucial for determining thgguivaient, iisett depends on the form of the Foinogea-

gauge field zero modes, as well as for obtaining the correcgrators: the_se determine which Hei_senberg equations are not
anomaly relation ' obtained directly as operator relations, and thereby fix the

The vacuum states have a much simpler structure in th onditions which must be satisfied by states in order for
light-front representation than at equal tim@his is also these to hold in a weak sense. The procedure thus has an

true in the Schwinger modgl1].) However, the formulation unpleasantly circular character. It would be of great interest
! 0 have a more straightforward formulation of light-front

iield theory, particularly as the addition of further spacetime

mmensions, and the associated renormalization problems,

can only increase the difficulties.

with periodicity conditions on the characteristic surfaces ha
the property that some of the details of the operator product
such as the condensate, do not approach their continuu
values as the periodicity length is taken to infinity. The de-
gree to which one may lose the ability to represent some ACKNOWLEDGMENTS
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