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A POINTWISE ESTIMATE FOR THE FOURIER

TRANSFORM AND MAXIMA OF A FUNCTION

Ryan Berndt

Abstract. We show a pointwise estimate for the Fourier transform on the line
involving the number of times the function changes monotonicity. The contrapositive

of the theorem may be used to find a lower bound to the number of local maxima

of a function. We also show two applications of the theorem. The first is the two
weight problem for the Fourier transform, and the second is estimating the number

of roots of the derivative of a function.

It is a classical result of Dirichlet that if f is a function of bounded variation on
the circle, then the Fourier coefficients, f̂(n), are O(1/n) (and therefore the Fourier
series of f converges) [9, p. 128], [10, p. 57]. We present here an inequality that
implies a similar result, but for the Fourier transform on the line. Each time a real
function changes from increasing to decreasing, we say that the function crests. We
show an estimate for the Fourier transform of a function in terms of the number
times the function crests.

This paper consists of two theorems and two applications. The first applica-
tion estimates the number of roots of the derivative of a function, and the second
application is a weighted Fourier norm inequality.

We first make a quick note on terminology and notation. We use the terms
increasing and decreasing in the wider sense; f(x) ≡ 1 is both increasing and
decreasing everywhere. We define the Fourier transform by the formula f̂(z) =∫
f(x)e−ixz dx. Whenever we take the Fourier transform of a function, we assume

that f ∈ L1 so that f̂(z) is defined for all z ∈ R. We use the letter C to denote
a constant whose value may change at each appearance. Finally, we say that two
sets have almost disjoint support if the intersection of their supports has Lebesgue
measure zero.

We provide a precise definition of crests below, but the reader may want to think
of them as local maxima for the time being.

Theorem 1. If f ∈ L1 is nonnegative and #crests(f) = N then

|f̂(z)| ≤ 4N
∫ 1/z

0

f∗(x) dx.

for all z > 0.
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2 R. BERNDT

Here, f∗ is the decreasing rearrangement of f . As usual, it is defined by f∗(x) =
inf{α > 0 : |{t : |f(t)| > α}| ≤ x}, where | · | of a set represents the Lebesgue
measure of that set. We note that if f is also bounded then the theorem implies
that f̂(z) is O(1/z), as in the case of Fourier series [9, p. 128].

In an example below we demonstrate that the appearance of the N in the the-
orem can not be removed, and in fact, appears as the correct order of magnitude.
Therefore, we are able to turn our viewpoint and use the contrapositive to predict
the number of times that that the function will crest. Precisely, the contrapositive
is the following.

Theorem 2. If f ∈ L1 is nonnegative and

Q(z) =
|f̂(z)|

4
∫ 1/z

0
f∗(x) dx

> N

for some z > 0, then #crests(f) > N .

We prove this theorem below. We note that the function Q is continuous since
f̂ is continuous and the integral is absolutely continuous. So, if Q(z) > N for some
z then it is greater than N in a neighborhood of z. Application 1, below, shows
how we may use Theorem 2 to estimate the number of roots of the derivative of a
function f .

Definition. A nonnegative function f is said to crest once if there exists a point
b such that f(x) is increasing for x < b and decreasing for x > b. In this case we
write #crests(f) = 1.

Definition. We say that a nonnegative function f crests N ≥ 1 times if it can be
written as the sum of no fewer than N nonnegative functions with almost disjoint
support, each of which crests once. That is,

#crests(f) = min{N ∈ N : f =
N∑
i=1

fi, fi ≥ 0 al. disj. supp.,#crests(fi) = 1}

If the set above is empty then we say that #crests(f) =∞.

The sum of two disjoint characteristic functions like

f(x) = χ[0,1](x) + χ[2,3](x)

crests two times. If f is zero on the negative axis and decreasing as x grows then
f crests once. For example,

f(x) =
{

0 for x ≤ 0
1/x for x > 0

has one crest. A constant function has one crest, and if f is a strictly increasing
function, #crests(f) =∞.

Sometimes the number of crests equals the number of local maxima of a function.
Any condition on a function that forces it to be locally strictly increasing and
decreasing near a maximum will imply that the number of crests equals the number
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of local maxima. For example, if f is a smooth function such that f ′(x) = 0 implies
f ′′(x) 6= 0, then #crests(f) equals the number of local maxima of f .

Proof of Theorem 2. This is really just the contrapositive of Theorem 1. Sup-
pose f ∈ L1 is nonnegative and Q(z) > N for some z > 0, then by Theorem 1,
#crests(f) 6= N . Either #crests(f) > N or #crests(f) < N . If #crests(f) < N
then it must be possible to write f as the sum of fewer than N functions, each with
one crest, with almost disjoint supports. But, then, by the theorem, Q(z) < N for
all z > 0, a contradiction. Hence, #crests(f) > N .

We prove Theorem 1 by first proving two lemmata. We start by considering the
case where f is a decreasing function and use this to bootstrap to the case of a finite
number of crests. We note that by L1[0,∞) we mean the space of all integrable
functions that are zero on the negative axis.

Lemma. If f ∈ L1[0,∞) is nonnegative and decreasing then

(1) |f̂(z)| ≤ 2
∫ 1/z

0

f(x) dx

for all z > 0, and 2 is the best constant.

Proof. Since f is decreasing we may adjust it on a set of measure zero so that it
is left continuous. In fact, since f is a decreasing element of L1 we may assume
without loss of generality that f is left continuous. Hence, there exists a Borel
measure µ such that

f(x) = µ([x,∞)).

Fixing z > 0 we write

f̂(z) =
∫ ∞

0

f(x)e−ixz dx

=
∫ ∞

0

∫
[x,∞)

dµ(t)e−ixz dx

=
∫ ∞

0

∫ t

0

e−ixz dx dµ(t)

=
∫ ∞

0

1− e−tz

iz
dµ(t),

where the change of order in the integration is justified because f ∈ L1. Since∣∣∣∣1− e−itziz

∣∣∣∣ =
2| sin(tz/2)|

z
≤ 2 min(t, 1/z)

we have

|f̂(z)| ≤ 2
∫ ∞

0

min(t, 1/z) dµ(t).

Now, the integral on the right is the integral in (1), because
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∫ 1/z

0

f(x) dx =
∫ 1/z

0

∫
[x,∞)

dµ(t) dx

=
∫ 1/z

0

∫ t

0

dx dµ(t) +
∫ ∞

1/z

∫ 1/z

0

dx dµ(t)

=
∫ ∞

0

min(t, 1/z) dµ(t).

The fact that 2 is the best constant follows from taking f = χ[0,π] and z = 1 so

that |f̂(z)| = 2 = 2
∫ 1/z

0
f .

Remark. Although the proof above provides the best constant, it might be hard to
intuit. We provide a sketch of another proof, whose result once known, provides
motivation for the lemma and its proof above. This alternative proof does not
provide the best constant.

Let Sf(z) =
∫∞

0
f(x) sin(xz) dx be the sine transform of f . We may write this

as an alternating series

Sf(z) =
1
z

∞∑
k=0

(−1)k
∫ (k+1)π

kπ

f(x/z)| sinx| dx

=
1
z

∞∑
k=0

(−1)kbk,

where bk =
∫ (k+1)π

kπ
f(x/z)| sin(x)| dx ≥ 0. Since f is decreasing, bk is a decreasing

sequence. Therefore, by a standard alternating series estimate,

0 ≤ b0 − b1 ≤ zSf(z) ≤ b0,

showing that 0 < Sf(z) ≤
∫ π/2z

0
f(x) dx. This implies that

|Sf(z)| ≤ π

2

∫ 1/z

0

f(x) dx.

The same technique can be applied to the cosine transform, where the constant
in the analogous inequality is 3π/2. Since f is zero on the negative axis, |f̂(z)| =
|Cf(z)− iSf(z)| ≤ π

√
10/2

∫ 1/z

0
f(x) dx. Here π

√
10/2 ≈ 5 so this constant is not

as good.

Lemma. If f ∈ L1[0,∞) is nonnegative and crests once at b > 0 then

(2) |f̂(z)| ≤ 2
∫ b+1/z

b−1/z

f(x) dx

for all z > 0.

Proof. We may write f = g1 + g2 where g1 is supported in (−∞, b] and increasing
over its support, and g2 is supported in [b,∞) and decreasing over its support. If
we let h(x) = g1(b− x) then h is decreasing and we may apply (1) to h to get
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|ĥ(z)| ≤ 2
∫ 1/z

0

h(x) dx

= 2
∫ b

b−1/z

g1(x) dx.

Since ĥ(z) = e−ibz ĝ1(−z), we have |ĥ(z)| = |ĝ1(−z)| = |ĝ1(z)|. Hence,

|ĝ1(z)| ≤ 2
∫ b

b−1/z

g1(x) dx.

Similarly, we let h(x) = g2(x+ b). Then, h is decreasing and we may apply (1) and
the fact that |ĥ(z)| = |ĝ2(z)| to get

|ĝ2(z)| ≤ 2
∫ b+1/z

b

g2(x) dx.

We apply the triangle inequality to f̂ = ĝ1 + ĝ2 to finish the proof.

Proof of Theorem 1. We define

f1(x) =
{

0, for x < 0;
f(x) for x ≥ 0;

f2(x) =
{

0, for x < 0;
f(−x) for x ≥ 0,

so that f(x) = f1(x) + f2(−x) and f1, f2 ∈ L1[0,∞). Let Nj = #crests(fj). Since
the supports of fj overlap only at x = 0, N = N1 +N2. Also, there exist functions
fj,i such that 0 ≤ fj,i(x) ≤ fj(x) ≤ f(x), #crests(fi,j) = 1, and

fj(x) =
Nj∑
i=1

fj,i(x).

Applying the linearity of the Fourier transform and the fact that the modulus
of the Fourier transform of a real function is even, we have |f̂(z)| = |f̂1(z) +
f̂2(−z)| ≤ |f̂1(z)| + |f̂2(z)|. Supposing that the functions f1,i and f2,i have bi and
ci, respectively, as their cresting points, we have

|f̂(z)| ≤ 2

(
N1∑
i=1

∫ bi+1/z

bi−1/z

f1,i(x) dx+
N2∑
i=1

∫ ci+1/z

ci−1/z

f2,i(x) dx

)

with the help of repeated applications of (2). For any Lebesgue measurable set E,∫
E
f ≤

∫ |E|
0

f∗, see Bennett and Sharpley [2, p. 44]. Thus,
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|f̂(z)| ≤ 2

(
N1∑
i=1

∫ bi+1/z

bi−1/z

f(x) dx+
N2∑
i=1

∫ ci+1/z

ci−1/z

f(x) dx

)

≤ 2

(
N1∑
i=1

∫ 2/z

0

f∗(x) dx+
N2∑
i=1

∫ 2/z

0

f∗(x) dx

)

≤ 4N
∫ 1/z

0

f∗(x) dx,

finishing the proof of the Theorem 1.

Example. In this example we show that the N in Theorem 1 can not be removed
and appears as the correct order of magnitude. Precisely, we show that given N ≥ 1,
there exists a function f ∈ L1[0,∞) with 3N crests such that

Q(z) =
|f̂(z)|

4
∫ 1/z

0
f∗(x) dx

> N

for some z > 0. We take f to be of the form

f(x) =
∞∑
k=0

ckχ[k,k+1](x).

We let c0, c2, c4, . . . , c2(3N−1) be 1 and we let all other ck be zero. The Fourier
transform of our function is given by

f̂(z) =
1
z

∞∑
k=0

ck[sin(kz + z)− sin(kz)]− ick[cos(kz)− cos(kz + z)],

and the decreasing rearrangement is given by

f∗(x) =
{

1 for 0 ≤ x < 3N
0 otherwise.

Now, f is a function with 3N crests, but if we take z = (2l + 1)π, l ∈ N, then

f̂(z) =
−2i
z

(c0 + c2 + c4 + . . . ) =
−6Ni
z

,

and if z is also greater than 1/3N∫ 1/z

0

f∗(x) dx = 1/z.

Hence, for large enough z = (2l + 1)π,

Q(z) =
6N/z
4/z

= 1.5N > N.
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Application 1. In view of this example, we can use Theorem 2 to estimate the
number of roots of the derivative of a function.

Suppose f is a smooth function where f ′(x) = 0 implies f ′′(x) 6= 0, so that the
derivative crosses the x-axis at each of its roots. In this case, the number of crests
is equal to the number of local maxima of f . Now, if f is integrable and has N
local maxima, then f has at least 2N − 1 local extrema and f ′ has at least 2N − 1
roots. Hence, we may formulate the following application of our theorem.

Corollary. Suppose f ∈ L1 is nonnegative, smooth, and f ′(x) = 0 implies f ′′(x) 6=
0. If Q(z) > N for some z > 0 then f ′ has at least 2N − 1 real roots.

Application 2. In this application we show how we can apply the heart of The-
orem 1, appearing in inequality (1), to a norm estimate for the Fourier transform.
The norm estimate we have in mind is the “two weight problem for the Fourier
transform.” Part of this problem is finding functions u and v and a constant C such
that

(3)
(∫
|f̂(z)|qu(z) dz

)1/q

≤ C
(∫
|f(x)|pv(x) dx

)1/p

for all f where the right hand side is finite and the Fourier transform is suitably
defined. Several authors, including Benedetto and Heinig [1]; Heinig and Sinna-
mon [3]; and Jurkat and Sampson [5] have made sizable inroads, but no general
conditions on u and v, both necessary and sufficient, are known.

However, if in (3), we replace the weighted Lp spaces with weighted Lorentz
spaces, quite complete results exist, thanks largely to the works of Sinnamon [8] and
Benedetto and Heinig [1, p. 18]. The weighted Lorentz spaces Λp(w) and Γp(w) are
respectively defined to be the set of all nonnegative, measurable functions defined
on [0,∞) such that ‖f‖pΛp(w) :=

∫∞
0
f∗pw < ∞ and ‖f‖pΓp(w) :=

∫∞
0
f∗∗pw < ∞

where f∗∗(x) = 1
x

∫ x
0
f∗. Taking f ∈ L1 ∩ L2 with p, q ∈ (0,∞), Sinnamon [8]

found necessary conditions and sufficient conditions on nonnegative u(t) and v(t)
such that

(4) ‖f̂‖Λq(u) ≤ C‖f‖Γp(tp−2v(1/t))

by exploiting the unweighted version of this inequality due to Jodeit and Torchinsky
[4, Theorem 4.6]. When q = 2 and 0 < p ≤ 2 the conditions that Sinnamon gives
are both necessary and sufficient [8, section 5]. Benedetto and Heinig [1, p. 18]
found necessary and sufficient conditions on u and v such that

(5) ‖f̂‖Λq(u) ≤ C‖f‖Λp(v).

Our corollary below shows that for decreasing functions, the boundedness of a
Hardy-type operator implies the two weight Lebesgue inequality (3).

Corollary. Let p, q ∈ (0,∞). Let f ∈ Lp(v) and suppose f ∈ L1[0,∞) is nonneg-
ative and decreasing. If there exists a constant C such that the weighted inequality
for the Hardy operator
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(6)
(∫ ∞

0

(∫ z

0

f(x) dx
)q

u(1/z)
z2

dz)
)1/q

≤ C
(∫ ∞

0

f(x)pv(x) dx
)1/p

holds, then (∫ ∞
0

|f̂(z)|qu(z) dz
)1/q

≤ C
(∫ ∞

0

f(x)pv(x) dx.
)1/p

.

That is, there exists a constant C such ‖f̂‖Lq(u) ≤ C‖f‖Λp(v) for f decreasing.

Necessary and sufficient conditions on u and v such that (6) holds are well known,
both in the case of general functions f as well as for decreasing functions f . The
case of general functions is due to the work of many authors, one can consult Maz’ja
[6] or Benedetto and Heinig [1, p. 6] as references. Sawyer discovered necessary
and sufficient conditions such that (6) holds for decreasing functions [7, Theorem
2].

Although the corollary only applies to decreasing functions f , it has the ad-
vantage of estimating the Lq(u) norm of the Fourier transform as opposed to the
norm of the decreasing rearrangement of the Fourier transform as in (4) and (5).
These are, in general, not comparable. This is simply because the decreasing re-
arrangement defined with respect to Lebesgue measure and the weight function u
are incompatible. For example, if we take the function u(x) = χ(1,∞)(x) and

g(x) =


x, for x ∈ [0, 1];
2− x, for x ∈ (1, 2];
0, otherwise,

so that g∗(x) = −.5x + 1, then ‖g‖Λp(u) = ‖g∗‖Lp(u) < ‖g‖Lp(u). The corollary
provides us with an estimate for ‖f̂‖Lq(u) which may in fact be larger than ‖f̂‖Λp(u).

Proof of Corollary. By (1) and the fact that f is decreasing we have for z > 0

|f̂(z)| ≤ C
∫ 1/z

0

f(x) dx.

Hence, by changing variables and applying the assumption we have

(∫ ∞
0

|f̂(z)|qu(z) dz
)1/q

≤ C

(∫ ∞
0

(∫ 1/z

0

f(x) dx

)q
u(z) dz

)1/q

= C

(∫ ∞
0

(∫ z

0

f(x) dx
)q

u(1/z)
z2

dz

)1/q

.

≤ C
(∫ ∞

0

f(x)pv(x) dx
)1/p

.
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Dear Ms. Baldwin:

Below please find the corrections to berndtB0647, “A Pointwise Estimate for the
Fourier Transform and Maxima of a Function,” by Ryan Berndt. The first change
is one I would like to make upon reflection. Although as it stands it is not incorrect,
it is misleading about the topic of the paper. The other changes are fixes that were
the result of the typesetting process.

Page 1, line 23. Change

It is a classical result of Dirichlet that if f is a function of bounded variation on
the circle, then the Fourier coefficients, f̂(n), are O(1/n) (and therefore the Fourier
series of f converges) [9, p. 128], [10, p. 57].

to

It is a classical result of Dirichlet that if f is a function of bounded variation on
the circle, then the Fourier coefficients, f̂(n), are O(1/n) [9, p. 128], [10, p. 57].

i.e. strike the parenthetical remark

(and therefore the Fourier series of f converges).

Page 2, line 27. Change

Application 3 shows how we may . . .

to

Application 1 shows how we may . . .

i.e. change the 3 to 1.

Page 2, line 40. The sentence beginning with

If the set above is empty, then we say . . .

should be part of Definition 2 immediately above. Hence is should not be indented.

Page 6, line 23 Change

Application 3

to

Application 1

i.e. change the 3 to a 1.

Page 6, line 33 Change

Application 4

to

Application 2

i.e. change the 4 to a 2.

Cordially yours,
Ryan Berndt
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