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Atomic Hardy Space Theory for
Unbounded Singular Integrals

RYAN BERNDT

ABSTRACT. We examine singular integrals of the form

Tf(x) = lim
ε→0

∫
|y|≥ε

B(y)
y

f(x −y)dy

where the function B is non-negative and even, and is allowed to
have singularities at zero and infinity. The operators we consider
are not generally bounded on L2(R), yet there is a Hardy space
theory for them. For each T there are associated atomic Hardy
spaces, called H1

B and H1,1
B . The atoms of both spaces possess a

size condition involving B. The operator T maps H1,1
B and certain

H1
B continuously into H1 ⊂ L1. The dual of H1

B is a space we call
BMOB . The Hilbert transform is a special case of an operator T
and its H1

B and BMOB spaces are H1 and BMO.

1. INTRODUCTION

We discuss a Hardy space theory for a certain class of singular integral operators
which are, in general, unbounded on L2(R). By “Hardy space theory” we mean a
theory that substitutes for the operators’ lack of continuity on L1(R).

The operators in which we are interested are of the form

(1.1) Tf(x) = lim
ε→0

∫
|y|≥ε

B(y)
y

f(x −y)dy,

where B is a non-negative function from a class of functions we discuss in a mo-
ment. One such function B has singularities like | log |y| | near the origin and
infinity—such a function is not allowed in the standard Calderón-Zygmund the-
ory.
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Our work in one dimension was prompted by then dimensional, n ≥ 2, work
of R. Fefferman [5] on singular integral operators possessing additional functions
in their kernels. Continuity on Lp(Rn), 1 < p < ∞, was obtained for pv(K ∗ f)
where the kernel K was of the form

K(x) = Ω(x/|x|)
|x|n B(|x|).

The function Ω satisfied certain smoothness and cancelation conditions. In this
case the function B was bounded. But, such a theorem does not carry-over to the
one dimensional case. When n = 1, then K(x) is of the form B(x)/x where B is
even. If B(x) = sin |x|, then pv(K ∗ f) is not bounded on L2(R) [8].

We have found a condition for B other than boundedness that has proven
useful for a discussion of the properties of the associated operator T . Let B be the
set of all positive, even functions B for which there exists a constant c0, 0 ≤ c0 < 1,
such that

(1.2) |B′(x)| ≤ c0
B(x)
|x|

for all x 6= 0. The set B enjoys many closure properties. For example, the com-
position of two functions in B is an element of B. Other properties of B are
discussed in Section 2. We note that if B(x) = 1/π , then B satisfies (1.2) and
B(x)/x is the kernel of the Hilbert transform.

If B ∈ B, then we may have singularities in the kernel other than 1/x. For
example, if 0 < α < 1 we may take B(x) = |x|α. In this case c0 = α suffices to
satisfy (1.2). We might call B(x)/x an odd “Riesz potential.” Another example is

B(x) =
√

1+ log2 |x|. More examples of functions satisfying (1.2) are discussed
in Section 2.

The operators given in (1.1) with B ∈ B are not necessarily bounded on
L2(R). This is because of the following theorem.

Theorem 1.1 ([2]). If B ∈ B and K(x) = B(x)/x, then K̂ exists as a tempered
distribution and can be identified with a function (which we also call K̂) such that for
z ∈ R,

K̂(z) = −i sgn(z)B(π/z)s(z).

The function s is a real function that is bounded above and below by positive constants.

We remark that Theorem 1.1 is a generalization of the the identity

ĥ(z) = −i sgn(z)

where h(x) = 1/πx, the kernel of the Hilbert transform.
The immediate consequence of Theorem 1.1 is that when B ∈ B, the operator

T is bounded on L2(R) if and only if B is also bounded. We will consider the
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case where B is bounded (and so when T is bounded on L2), but we are particular
interested in the case where B is unbounded and hence when T is unbounded on
L2(R).

This brings us to the main point of the paper: finding atomic spaces that non-
Calderón-Zygmund singular integral operators map continuously into L1. We do
this even in the case where the operator is unbounded on L2(R). Since the proof
that the Hilbert transform maps H1 continuously into L1 usually relies on the
fact that the Hilbert transform is bounded on L2, substitute methods must be
developed. Thus, another part of this paper’s goal is to show that boundedness on
L2 is not essential for the singular integral operator to have important mapping
properties.

We make a brief note about notation. The letter B will always denote a func-
tion from the class B and K(x) will always equal B(x)/x. Thus, K will always be
an odd function. The letter T will signify the operator Tf(x) = pv(K ∗ f)(x).
When B(x) = π−1, then T is the Hilbert transform and we use H to denote this
operator. We write fQ for the mean value of a function on the interval Q. Finally,
we use the letter C to denote a constant that is suitably independent of the other
quantities appearing in context. The value of C may vary at each appearance.

2. NATURE OF THE KERNEL AND EXAMPLES

Definition 2.1. The class of functions B consists of non-negative, even func-
tions that are positive except perhaps at zero. Each B ∈ B is differentiable away
from 0 and has a constant c0, 0 ≤ c0 < 1, associated with it so that

(2.1) |B′(x)| ≤ c0
B(x)
|x| for all x 6= 0.

We note that if B(x) = 1/π , then B ∈ B with c0 = 0 and K(x) = B(x)/x is the
kernel of the Hilbert transform.

The class B is closed under addition and composition and partially closed
under multiplication. We list some closure properties below. The reader may
readily verify them.

(i) B is closed under addition.
(ii) If B1, B2 ∈ B with associated constants c0 and c′0, then B1B2 ∈ B provided

c0 + c′0 < 1.
(iii) If 0 ≤ θ ≤ 1 and B1, B2 ∈ B, then Bθ1 B

1−θ
2 ∈ B.

(iv) If B1, B2 ∈ B, then B1 ◦ B2 ∈ B.
(v) If B ∈ B, then 1/B ∈ B.

(vi) If B(x) ∈ B, then B(1/x) ∈ B.
The functions in B enjoy other useful properties as a consequence of (2.1).

It implies B(x) is integrable near zero and B(x)/x2 is integrable at infinity, see
Lemma 2.5. These two statements are in fact equivalent because of (vi) above.
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Second, B(x)/x is a decreasing function for x > 0 and xB(x) is increasing for
x > 0, see Lemma 2.2.

It is sometimes more useful to express (2.1) in terms of the function K(x) =
B(x)/x. If K(x) = B(x)/x and B ∈ B, then there exist constants c1 and c2 with
0 < c1 ≤ c2 < 2 such that for x 6= 0,

(2.2) c1
K(x)
x

≤ −K′(x) ≤ c2
K(x)
x

.

The inequality (2.2) is equivalent to (2.1) and we will use the characterization
(2.2) when it is convenient, see Lemma 2.4. Since K(x) = B(x)/x, K is an odd
function, differentiable for x 6= 0, and decreasing for positive x.

Before we prove these assertions about the functions B ∈ B, we present some
concrete examples of kernels K that satisfy (2.2). For example

K(x) =
√

1+ log2 |x|
x

is an example of a kernel satisfying (2.2) We note that near 0 and ∞, K(x) ∼
| logx|/x. Here, we may take c1 = 1

2 and c2 = 3
2 .

Another example is given by an odd version of the Riesz potentials. That is,
for 0 < α < 1 we may take K(x) = x−1+α for x > 0 and extend K to be odd. In
this case we have c1 = c2 = 1−α in (2.2).

The kernel K(x) may be more or less singular at zero and infinity than is
allowed in the classical theory. For example, we may take 0 < β < 1

2 and we may
take K(x) to be the odd extension of any of the following functions:

1

x1−β
√

1+ log2 |x|
,

1

x1+β
√

1+ log2 |x|
,

√
1+ log2 |x|
x1+β ,

√
1+ log2 |x|
x1−β .

Even more striking is the following example. Since |x|1/2 ∈ B we have |x|−1/2 ∈
B and hence |x|1/2 + |x|−1/2 ∈ B. Thus, the odd extension of

K(x) = x−1/2 + x−3/2

satisfies (2.2). Comparing to 1/x, this kernel is more singular at zero and at
infinity.

Finally, the kernel K(x) may have an oscillating factor in the numerator (al-
though it must remain positive). For example, for any c0 with 0 ≤ c0 < 1,

K(x) =
exp

(
c0

∫ x
0

(
sin t
t

)
dt
)

x
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satisfies (2.2).
We will use the following lemmas in Section 3. The reader may wish to

postpone reading them until they are needed in Section 3.

Lemma 2.2. If B ∈ B, then for positive x, B(x)x is strictly increasing and
B(x)/x is strictly decreasing.

Proof. This is easily checked by showing that the derivative of B(x)x is pos-
itive and the derivative of B(x)/x is negative. ❐

Lemma 2.3 relates with an inequality the behavior of B under dilation with the
functions xc0 and x−c0 . It also provides a representation formula for B.

Lemma 2.3. If B ∈ B with constant c0, then there exists a bounded function
s(x), |s(x)| ≤ c0, such that

(2.3) B(x) = B(1)e
∫ x
1 (s(t)/t)dt

for a.e. x > 0. Hence, if λ ≥ 1, then λ−c0B(x) ≤ B(λx) ≤ λc0B(x). In particular
K(x)→ 0 as x →∞.

Proof. Take x > 0. We may write (2.1) as

B′(x)
B(x)

= s(x)
x

where |s(x)| ≤ c0. In Lemma 2.2 we saw that B(x)/x is decreasing for x > 0 so
for any compact set K ⊂ (0,∞), |B′(x)| ≤ c0 B(x)/x ≤ c0CK for some constant
CK depending on K. Thus, B′(x) is locally bounded away from zero and hence
B is locally absolutely continuous away from zero. In particular, logB(x) can
be recovered from the integral of its derivative for almost every x in any closed
interval contained in (0,∞). Therefore, we may solve the differential equation
and get (2.3). ❐

Often we will apply a weaker version of the dilation property given in Lemma 2.3,
namely if λ ≥ 1, then

(2.4) λ−1B(x) ≤ B(λx) ≤ λB(x).

Lemma 2.4. Let K(x) = B(x)/x where B is an even function.
(i) If there exist constants c1 and c2, 0 < c1 ≤ c2 < 2, such that for all x 6= 0

c1
K(x)
x

≤ −K′(x) ≤ c2
K(x)
x

,

then B ∈ B with c0 = max{1 − c1, c2 − 1}. Furthermore, if c2 < 1, then B
is strictly increasing for x > 0 and if c1 > 1, then B is strictly decreasing for
x > 0.
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(ii) If B ∈ B, then there exist constants c1 and c2, 0 < c1 ≤ c2 < 2, such that for
x 6= 0

c1
K(x)
x

≤ −K′(x) ≤ c2
K(x)
x

where 1− c2 = infx>0 B′(x)x/B(x) and 1− c1 = supx>0 B
′(x)x/B(x).

Proof. We show (i) for x > 0. Since −K′(x) = B(x)/x2 − B′(x)/x and
K(x) = B(x)/x, we have

(2.5) c1
B(x)
x2 ≤ B(x)

x2 − B
′(x)
x

≤ c2
B(x)
x2 ,

which is equivalent to

(1− c1)
B(x)
x

≥ B′(x) ≥ (1− c2)
B(x)
x

.

Thus, if c2 < 1, then B is strictly increasing for positive x and we may take
c0 = 1− c1. If c1 > 1, then B is strictly decreasing for positive x and we may take
c0 = c2 − 1. Otherwise, 0 < c1 ≤ 1 ≤ c2 < 2 and so |B′(x)| ≤ max(1− c1, c2 −
1)B(x)/x. We note that in all cases, we may actually take c0 = max(1−c1, c2−1).

We now prove (ii). We take x > 0 and write (2.1) as

−c0 ≤ B′(x)x
B(x)

≤ c0.

Then we have

−c0 ≤ inf
x>0

B′(x)x
B(x)

≤ B′(x)x
B(x)

≤ sup
x>0

B′(x)x
B(x)

≤ c0.

Taking 1− c2 = infx>0 B′(x)x/B(x) and 1− c1 = supx>0 B
′(x)x/B(x) we have

c2 ≥ 1− B
′(x)x
B(x)

≥ c1

where 0 < 1−c0 ≤ c1 ≤ c2 ≤ 1+c0 < 2. We multiply the inequality by B(x)/x2

to get

c2
B(x)
x2 ≥ B(x)

x2 − B
′(x)
x

≥ c1
B(x)
x2 .

This is exactly (2.5) and so (ii) is proven. ❐

Lemma 2.5. If B ∈ B, then B(x) is integrable near x = 0 and B(x)/x2 is
integrable near x = ∞. In particular, we have the estimates

1
2− c1

sB(s) ≤
∫ s

0
B(x)dx ≤ 1

2− c2
sB(s)(2.6)

1
c2

B(s)
s

≤
∫∞
s

B(x)
x2 dx ≤ 1

c1

B(s)
s
.(2.7)



Atomic Hardy Space Theory for Unbounded Singular Integrals 1467

Proof. In Lemma 2.3 we saw that B is locally absolutely continuous away
from zero since B is differentiable and B′ is locally bounded. Similarly, K is locally
absolutely continuous away from zero. Let ε > 0. Using the identity B(x) =
xK(x) and integrating by parts we have

(2.8)
∫ s
ε
xK(x)dx = −1

2

∫ s
ε
x2K′(x)dx + 1

2
s2K(s)− 1

2
ε2K(ε).

Since −K′(x) ≤ c2K(x)/x, s2K(s) = sB(s) and ε2K(ε) is positive we have

2
∫ s
ε
xK(x)dx ≤ c2

∫ s
ε
xK(x)dx + sB(s).

So that ∫ s
ε
xK(x)dx ≤ 1

2− c2
sB(s).

Fatou’s lemma gives us the right hand inequality of (2.6). To get the other half
of (2.6) we again integrate by parts to get (2.8). Then, we apply the inequality
−K′(x) ≥ c1K(x)/x to get

(2.9) 2
∫ s
ε
xK(x)dx ≥ c1

∫ s
ε
xK(x)dx + s2K(s)− ε2K(ε).

We claim that ε2K(ε) → 0 as ε → 0. In Lemma 2.3 we saw that B(x)/x → 0 as
x → ∞ for any function B ∈ B. Since B(1/x) is also an element of B we know
that B(1/x)/x → 0 as x → ∞. Then, by substituting ε for 1/x we find that
ε2K(ε) = εB(ε)→ 0 as ε → 0. Hence, after taking the limit of both sides of (2.9)
and applying the dominated convergence theorem we obtain

2
∫ s

0
xK(x)dx ≥ c1

∫ s
0
xK(x)dx + s2K(s).

Thus, ∫ s
0
xK(x)dx ≥ 1

2− c1
sB(s).

To prove (2.7) we take R > s and apply (2.2) to get

1
c2

∫ R
s
−K′(x)dx ≤

∫ R
s

K(x)
x

dx ≤ 1
c1

∫ R
s
−K′(x)dx

and so

c−1
2 [K(s)−K(R)] ≤

∫ R
s

K(x)
x

dx ≤ c−1
1 [K(s)−K(R)].
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Finally, by Lemma 2.3, K(R) → 0 as R → ∞, so taking the limit as R → ∞ gives
us

1
c2

B(s)
s

≤ lim
R→∞

∫ R
s

K(x)
x

dx ≤ 1
c1

B(s)
s
,

and the monotone convergence theorem allows us to pass the limit inside the
integral. ❐

3. MAPPING PROPERTIES OF T AND AN ASSOCIATED DUAL

The Hardy space H1 can be characterized atomically: any function f ∈ H1 is a
sum of the form

∑
λkak where λk is a sequence of numbers such that

∑ |λk| <∞,
and each ak is an H1-atom. An atom in H1 is a function a with mean value zero
supported in an interval Q, satisfying a size condition like ‖a‖2 ≤ |Q|−1/2. If H is
the Hilbert transform it is known that ‖Ha‖1 ≤ C and from this we may deduce
that H maps H1 into L1. Also, the dual of H1 is BMO. In this way the Hilbert
transform is naturally related to the spaces H1 and BMO. The work of this section
is modeled on the Hilbert transform, where we will obtain a Hardy space and a
dual space related to the operator T .

Recall that T is given by

Tf(x) = lim
ε→0

∫
|y|≥ε

B(y)
y

f(x −y)dy.

We are looking for atomic spaces that T maps into L1. The elements of these
atomic spaces are of the form

∑
λkak with

∑ |λk| < ∞, like H1. The atoms have
different size conditions on their L2 norm depending on the situation. The space
H1
B is characterized by atoms where ‖a‖2 ≤ C|Q|−1/2B(|Q|)−1 and H1,1

B atoms
are absolutely continuous satisfying ‖a′‖2 ≤ C|Q|3/2B(|Q|).

Investigating the mapping properties of T on these atomic spaces, we have
found an underlying principle at work. First, if the atoms are “smooth,” that is
absolutely continuous, with a size condition on the derivative of a, then T maps
H1,1
B into L1 continuously, for all B ∈ B. Without a smoothness assumption on

the atoms, the nature of the kernel’s singularity at zero is fundamental. If B is
bounded and B ∈ B so that K has a singularity like 1/x at the origin, then T is
bounded from H1 into L1. If the associated constant c2 from Lemma 2.4 is less
than one, then T maps H1

B into L1 continuously.
Finally, for all B ∈ B we find that the Hilbert transform is bounded on H1

B
and H1,1

B . Given this we are able to improve the mapping properties of T and
conclude that T actually maps H1

B and H1,1
B into H1 continuously.

We show that T maps the spaces H1
B and H1,1

B continuously into L1 by check-
ing that ‖Ta‖1 ≤ C for some constant independent of the atom a. M. Bownik
[3] has shown that one must exercise caution when deducing the continuity of
an operator from its action on atoms. Theorem 3.2 below allows us to avoid the
pitfalls that M. Bownik warns us about [3, p. 3540–3541].
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Definition 3.1. We call a function a ∈ L2(R) an atom if there exists an
interval Q such that

(i) Support a ⊂ Q,

(ii)
∫
a = 0.

Theorem 3.2. Let A be a class of atoms for which there exist an operator T and
a constant C such that

‖Ta‖1 ≤ C
for all a ∈ A. Let X be a set whose elements are pairs of sequences (λk, ak)∞k=1 where
λk ∈ C and

∑ |λk| < ∞, and ak ∈ A. Then, if we define an equivalence class on X
such that two elements (λk, ak) and (µk, ek) are equivalent if and only if

(3.1)
∑
λkTak =

∑
µkTek,

then X is a Banach space. We write the elements of X as formal sums
∑
λkak, where

(λk, ak) is any representative element of its equivalence class. The norm of an element
f ∈ X is given by

‖f‖X = inf
{∑

|λk| :
∑
λkak ∈ [f ]

}
.

By the definition of the equivalence relation, T is automatically well defined and one-
to-one on X, if we define the action of T on X by

T
(∑

λkak
)
=
∑
λkTak.

Proof. The sums in (3.1) converge in L1 so there is no question about their
existence. Also, since

∑ |λk| ‖Tak‖1 converges, any rearrangement of
∑
λkak will

be in the same equivalence class. For the time being we write an equivalence class
in X as [f ] where f is a representative formal sum from the class. We make X
into a vector space by defining

Multiplication by a scalar: α[
∑
λkak] := [∑(αλk)ak],

Addition: [
∑
λkak]+ [

∑
µkek] := [∑(λµ)k(ae)k],

where (λµ)2k = λk, (λµ)2k+1 = µk, (ae)2k = ak, and (ae)2k+1 = ek. With
these definitions and our criterion for equivalence the axioms for a vector space
are satisfied.

We check that the norm as defined is indeed a norm:
(a) Suppose ‖f‖X = 0. Then, there exists a sequence of formal sums in [f ] with

`1 coefficients tending to zero. We take fn ∈ [f ] such that fn =
∑
k λnkank

and
∑
k |λnk| → 0 as n →∞. Thus, 0 ≤

∫
|Tfn(x)|dx ≤ C

∑
k |λnk| → 0 as

n → ∞. Therefore, by Fatou’s Lemma, Tf(x) = 0 almost everywhere. Since
T is one-to-one, f must be in the zero class of X.
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(b) Let α ∈ C. Then ‖αf‖X = inf{∑ |α| |λk| :
∑
k λkak ∈ [f ]} = |α| ‖f‖X .

(c) Let ε > 0 be given and choose
∑
λkak ∈ [f ] and

∑
µkek ∈ [g] such that∑ |λk| < ε+‖f‖X and

∑ |µk| < ε+‖g‖X . Then,
∑
(λµ)k(ae)k ∈ [f +g].

Hence,

‖f + g‖X ≤
∑
|(λµ)k| ≤

∑
|λk| +

∑
|µk| ≤ ‖f‖X + ‖g‖X + 2ε.

Therefore, X is a normed vector space. It is also a complete. This can be proven
in much the same way that one sometimes proves that Lp is complete, see Rudin
[10, p. 67], for example. We give an abbreviated proof.

Suppose fn is a Cauchy sequence in X. Choose a subsequence fnk whose
consecutive terms grow closer and closer together, that is ‖fnk+1 − fnk‖X ≤ 2−k.
Let

f = fn1 +
∞∑
k=1

fnk+1 − fnk.

Since the differences fnk+1 −fnk are in X, we may choose numbers λkj and atoms
akj in A such that fnk+1 − fnk =

∑∞
j=1 λkjakj and

∞∑
j=1

|λkj| ≤ ‖fnk+1 − fnk‖X +
1
2k
.

Also, fn1 ∈ X as well so fn1 =
∑∞
i=1 λiai(x) where

∑∞
i=1 |λi| ≤ C. Now, f ∈ X

since it has an atomic decomposition given by

f =
∞∑
i=1

λiai +
∞∑
k=1

∞∑
j=1

λkjakj,

where
∑∞
i=1 |λi|+

∑∞
k=1

∑∞
j=1 |λkj| ≤ C+2. It is now routine to show that fnk →

f in the X norm, and since a Cauchy sequence with a convergent subsequence
converges, X is complete. ❐

Definition 3.3. Let B ∈ B. If an atom a is supported in an interval with
radius b, then we call it a B-atom if

‖a‖2 ≤ 1
b1/2B(b)

.

If k ≥ 1 and if a(k−1) is absolutely continuous and

‖a(k)‖2 ≤ 1
bk+1/2B(b)

,

then we call a a smooth B-atom of order k. We note that smooth B-atoms
are B-atoms (except for an unimportant multiplicative constant) because ‖a‖2 ≤
cb‖a′‖2. Also, when B is constant, then B-atoms are H1 atoms.
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Definition 3.4. The Banach space constructed from B-atoms via (3.1) is
called H1

B and the Banach space constructed from smooth B-atoms of order k
is called H1,k

B . Sometimes we write H1,0
B for H1

B .

C. Zorko [13] has considered an atomic Hardy space like the H1
B we present

here and J. Alvarez [1] has studied Calderón-Zygmund operators acting on this
space. The size condition on the atom [13] is given by ‖a‖2 ≤ |Q|−1/2B(|Q|),
where B is not an element of B, rather B(x) is decreasing and x1/2B(x) is increas-
ing for x > 0. From this a Banach space is constructed and its dual is BMOB as
described in Definition 3.10. Our construction of H1

B complements these results
because we construct H1

B in a special case of B strictly increasing, and find its dual
to be BMOB . Thus, H1

B as we have defined it, or as C. Zorko defines it, has BMOB
as its dual.

We obtain the necessary estimate ‖Ta‖ ≤ C needed to apply Theorem 3.2
in Theorem 3.7. Later, we see how the size conditions in Definition 3.3 can be
applied to get the mapping properties for T . As we might expect, estimating the
L1 norm of Ta away from the support of the atom a is easier. Remarkably, the fact
that the kernel may be more singular at infinity than 1/x poses no problems. We
have for any atom (no just B-atoms) centered at the origin, the following theorem.

Theorem 3.5. Let B ∈ B and K(x) = B(x)/x; then there exists a constant C
such that

‖K ∗ a‖L1(R−2Q) ≤ Cb1/2B(b)‖a‖2

for any atom a supported in Q = [−b,b].
Proof. Since a has mean value 0 and since x ∈ R− 2Q,

|K ∗ a(x)| ≤
∫
Q
|K(x −y)− K(x)| |a(y)|dy.

Thus,∫
R−2Q

|K ∗ a(x)|dx ≤
∫
Q

∫
R−2Q

|K(x −y)− K(x)| |a(y)|dx dy.

Given a point x ∈ R− 2Q and a point y ∈ Q, there is a point x̄ between x −y
and x such that

|K(x −y)−K(x)| = |K′(x̄)| |y|
by the Mean Value Theorem. Since |x−y| ≥ |x|−|y| ≥ |x|/2 and |x| > |x|/2,
we have that |x̄| ≥ |x|/2. By (2.2) and since K(t)/t is positive and decreases
as |t| grows, |K′(x̄)| = −K′(x̄) ≤ c2K(x̄)/x̄ ≤ c2K(x/2)/(x/2). By (2.4),
K(x/2)/(x/2) ≤ 8K(x)/x. Once again, by (2.2), K(x)/x ≤ c−1

1 [−K′(x)].
Thus, |K′(x̄)| ≤ C[−K′(x)].
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Therefore,∫
R−2Q

|K ∗ a(x)|dx ≤ C
∫ b
−b
|a(y)| |y|dy

∫∞
b
−K′(x)dx.

Also,
∫∞
b
−K′(x)dx = K(b) = B(b)/b, and

∫ b
−b
|a(y)| |y|dy ≤ Cb3/2‖a‖2,

hence
‖K ∗ a‖L1(R−2Q) ≤ Cb1/2B(b)‖a‖2.

❐

Estimating the L1 norm of Ta near the support of a requires a consideration
of subclasses of B or a smoothness assumption on a. Here, the singularity at zero
in the kernel has a dramatic affect on the operator’s mapping properties.

Theorem 3.6. Let B ∈ B and K(x) = B(x)/x and Tf = pv(K ∗f). Also, let
a be an atom supported in an interval Q = [−b,b]. Then,

(i) If B is bounded, then

‖Ta‖L1(2Q) ≤ Cb1/2‖a‖2.

(ii) If B ∈ B and 1− c2 = infx>0 B′(x)x/B(x) > 0, then

‖Ta‖L1(2Q) ≤ Cb1/2B(b)‖a‖2.

(iii) If a is absolutely continuous, then

‖Ta‖L1(2Q) ≤ Cb3/2B(b)‖a′‖2.

Proof. (i) Since B ∈ B and B is bounded, T is bounded on L2(R) by Theorem
1.1, so (i) follows by an application of Hölder’s inequality.

(ii) Since B ∈ B and c2 < 1 in Lemma 2.4 we have∫ s
0
K(t)dt ≤ 1

1− c2
B(s),

following by an integration by parts in the same way (2.6) was derived. Thus,∫
2Q
|K ∗ a(x)|dx ≤

∫
3Q
|K(y)|

∫
|a(x −y)|dy

≤ C‖a‖1

∫ 3b

0
K(t)dt

≤ C‖a‖1B(3b)

≤ Cb1/2B(b)‖a‖2,
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because by (2.4), B(3b) ≤ 3B(b).

(iii) Let x ∈ 2Q. Define the truncated kernel Kε = Kχ{y:|y|>ε}. We write

Kε ∗ a(x) =
∫ −ε
−∞
+
∫∞
ε
K(y)a(x −y)dy

=
∫∞
ε
K(y)[a(x −y)− a(x +y)]dy,

using the fact that K is odd. Since a is supported in [−b,b] and x ∈ [−2b,2b],
the above integral is zero when y > 3b. So we may as well write the integral over
[ε,3b] and

Kε ∗ a(x) =
∫ 3b

ε
K(y)[a(x −y)− a(x +y)]dy

= 2
∫ 3b

ε
yK(y)

(
1

2y

∫ x−y
x+y

a′(t)dt
)
dy.

The term in parentheses is dominated by the Hardy-Littlewood Maximal function
of a′, M(a′)(x). Hence,

|Kε ∗ a(x)| ≤ CM(a′)(x)
∫ 3b

ε
yK(y)dy.

Since ‖Ma′‖L1(2Q) ≤ Cb1/2‖Ma′‖2 ≤ Cb1/2‖a′‖2 and yK(y) is integrable on
[0,3b] by (2.6), Kε ∗ a(x) is bounded by an integrable function independent of
ε. Thus, the Dominated Convergence Theorem implies

(3.2) lim
ε→0

Kε ∗ a(x) =
∫ 3b

0
K(y)[a(x −y)− a(x +y)]dy

for x ∈ 2Q. Therefore, K ∗ a(x) exists as a principal value convolution and has
the representation (3.2) as a function for x ∈ 2Q. Now, if we apply the estimate
for the integral of yK(y) as given in (2.6) along with the standard L2 estimate for
M(a′) we get

∫ 2b

−2b
|K ∗ a(x)|dx ≤ C

∫ 2b

−2b
M(a′)(x)dx

∫ 3b

0
yK(y)dy

≤ Cb1/2‖a′‖2

∫ 3b

0
yK(y)dy

≤ Cb3/2B(b)‖a′‖2.

❐
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Theorem 3.7. If B ∈ B and K(x) = B(x)/x and Tf = pv(K ∗ f), then we
have the following mapping properties for T .

(i) If B is bounded, then T : H1 → L1 continuously, that is

‖Tf‖1 ≤ C‖f‖H1 .

(ii) If B ∈ B and 1 − c2 = infx>0 B′(x)x/B(x) > 0, then T : H1
B → L1 continu-

ously, that is
‖Tf‖1 ≤ C‖f‖H1

B
.

(iii) In general, T : H1,1
B → L1 continuously, that is

‖Tf‖1 ≤ C‖f‖H1,1
B
.

Proof. Let a be an atom supported in Q = [−b,b].
(i) If a is an H1 atom, then ‖a‖2 ≤ b−1/2. By Theorems 3.5 and 3.6 and since
B is bounded,

‖Ta‖1 = ‖Ta‖L1(R−2Q) + ‖Ta‖L1(2Q)

≤ C(b1/2B(b)‖a‖2 + b1/2‖a‖2)
≤ C

where C depends on ‖B‖∞.
(ii) If a is a B-atom, then ‖a‖2 ≤ b−1/2B(b)−1. By Theorems 3.5 and 3.6 we

have

‖Ta‖1 = ‖Ta‖L1(R−2Q) + ‖Ta‖L1(2Q)

≤ C(b1/2B(b)‖a‖2 + b1/2B(b)‖a‖2)
≤ C.

(iii) If a is a smooth B-atom of order 1, then ‖a′‖2 ≤ b−3/2B(b)−1. By Theorems
3.5 and 3.6 we have

‖Ta‖1 = ‖Ta‖L1(R−2Q) + ‖Ta‖L1(2Q)

≤ C(b1/2B(b)‖a‖2 + b3/2B(b)‖a′‖2)

≤ Cb3/2B(b)‖a′‖2

≤ C.

Now, completing the proof for each of the three cases is the same. We just prove
(ii) and the others follow in the same way. Let f ∈ H1

B where f = ∑
λkak and

where
∑ |λk| ≤ 2‖f‖H1

B
. If the support of ak is not centered at the origin, then
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we translate it to the origin. Since convolutions commute with translations and
the L1 norm is invariant under translations, we have ‖Tak‖1 ≤ C. Hence,

‖Tf‖1 ≤
∑
|λk| ‖Tak‖1 ≤ C

∑
|λk| ≤ C‖f‖H1

B
. ❐

Now we show that the Hilbert transform operates continuously on H1
B and

H1,k
B . This will give us the following improvement to Theorem 3.7.

Theorem 3.8. If B ∈ B(x) and K(x) = B(x)/x and Tf = pv(K ∗ f), then
if T : H1

B → L1 continuously, then T : H1
B → H1 continuously, so

‖Tf‖H1 ≤ C‖f‖H1
B
.

Similarly, T always maps H1,k
B into H1 continuously, so

‖Tf‖H1 ≤ C‖f‖H1,k
B
,

for all k ≥ 1.

Proof. By Theorem 3.9, if f ∈ H1,k
B , then Hf ∈ H1,k

B for any k ≥ 0. Thus,
under our assumptions H(Tf) = T(Hf) ∈ L1 and Tf ∈ L1 hence Tf ∈ H1.
Now, showing the continuity is routine (for the H1 norm we use the equivalent
norm ‖g‖1 + ‖Hg‖1). ❐

Theorem 3.9. If B ∈ B and f ∈ H1,k
B for some k ≥ 0, then there exists a

constant C such that
‖Hf‖H1,k

B
≤ C‖f‖H1,k

B
.

Proof. We show that if a is a B-atom with smoothness k ≥ 0, then we may
decompose Ha so that

(3.3) Ha(x) =
∑
λjaj(x)

where each aj is a B-atom with smoothness of order k and
∑ |λj| ≤ C. Once

we have shown (3.3), then we may take any f ∈ H1,k
B where f = ∑

µkek with∑ |µk| ≤ 2‖f‖H1
B

and apply H to it to get ‖Hf‖H1,k
B
≤ C‖f‖H1,k

B
.

We now prove (3.3). Without loss of generality we may assume that a is sup-
ported in the interval [−b,b]. We decompose the kernel of the Hilbert transform
via a partition of unity. The partition of unity [6, p. 322] is given by C∞ functions
ϕj , where j = 0, 1, 2, . . . , that satisfy

(i) ϕj(t) ≥ 0
(ii)

∑∞
j=0ϕj(t) = 1 for all t ∈ (0,∞)

(iii) ϕ0 is supported in [0,2b]
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(iv) ϕj is supported in [2j−1b,2j+1b], for j = 1, 2, 3, . . .
(v) |ϕ(k)

j (t)| ≤ dk t−k for all t > 0, k = 0, 1, 2, . . . , j = 0, 1, 2, . . .

Let h(x) = (πx)−1 be the kernel of the Hilbert transform. Let hj(x) = h(x)ϕj(|x|)
for j = 0, 1, 2, . . . . Then,

(3.4) |h(k)j (x)| ≤ C
|x|k+1 .

Also, h(x) = h(x)∑∞
j=0ϕj(|x|) =

∑∞
j=0 h(x)ϕj(|x|) =

∑∞
j=0 hj(x). We note

that for any x this sum has at most three terms because of the locations of the
supports of the functions ϕj . Thus,

Ha(x) = h∗ a(x) =
∞∑
j=0

hj ∗ a(x).

Now, h̄ = h0 + h1 + h2 is supported in [−8b,8b] and gives rise to a bounded
operator on L2(R) since the Hilbert transform is itself bounded on L2. Thus, for
some constant A,

‖h̄∗ a(k)‖2 ≤ A‖a(k)‖2 ≤ A
bk+1/2B(b)

.

The function h̄ ∗ a is supported in [−8b,8b] + [−b,b] = [−9b,9b] and has
mean-value zero. By (2.4), the weak dilation property of the functions B, B(9b) ≤
9B(b), so we have

‖h̄∗ a′‖2 ≤ 9k+3/2A
(9b)k+1/2B(9b)

.

Hence, we may write h̄ ∗ a(x) = λ0a0(x) where λ0 = 9k+3/2A and a0 is a
B-atom with smoothness of order k.

We now consider the case j ≥ 3. Since a has mean-value zero,

h(k)j ∗ a(x) =
∫ b
−b
[h(k)j (x −y)− h(k)j (x)]a(y)dy.

By the Mean Value Theorem and (3.4)

|h(k)j ∗ a(x)| ≤ C
∫ b
−b

|y|
|t|k+2 |a(y)|dy

for some t between x −y and y . We may as well assume that x is in the support
of hj ∗ a. We have

supphj ∗ a(x) ⊂ {x : 2j−1b ≤ |x| ≤ 2j+1b} + {x : 0 ≤ |x| ≤ b}
⊂ {x : 2j−1b − b ≤ |x| ≤ 2j+1b + b}.
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Since y ∈ [−b,b] we have |x − y| ≥ |x| − |y| ≥ 2j−1b − 2b ≥ 2j−2b. Also,
|x| ≥ 2j−2b. Thus, |t| ≥ 2j−2b ≥ C2jb. Therefore,

|h(k)j ∗ a(x)| ≤ C
2j(k+2)bk+2

∫ b
−b
|y| |a(y)|dy

≤ C b3/2

2j(k+2)bk+2 ‖a‖2

≤ C
2j(k+2)

1
bk+1B(b)

.

The support of hj ∗ a(x) is contained in the interval [−2j+2b,2j+2b], so we
observe

1
bk+1B(b)

= (2j+2b)k+1B(2j+2b)
bk+1B(b)

1
(2j+2b)k+1B(2j+2b)

≤ C2(j+2)(k+1) B(2j+2b)
B(b)

1
(2j+2b)k+1B(2j+2b)

≤ C2(j+2)(k+1)+jc0
1

(2j+2b)k+1B(2j+2b)
.

To get the last inequality we applied Lemma 2.3. That is, B(2j+2b) ≤ (2j+2)c0B(b)
where c0 < 1 is the constant associated to the function B. We now have

|h(k)j ∗ a(x)| ≤ C 2(j+2)(k+1)+jc0

2j(k+2)
1

(2j+2b)k+1B(2j+2b)

≤
(
C22k

(21−c0)j

)
1

(2j+2b)k+1B(2j+2b)
.

If we let hj ∗ a(x) = λjaj(x), where λj is the quantity above in parentheses,
then aj is a B-atom with smoothness of order k. Also, the sum of the coefficients
is bounded above by a constant not depending on the atom:

∞∑
j=0

|λj| = 9k+3/2A+
∞∑
j=3

|λj|

= 9k+3/2A+ C22k 22(1−c0)

21−c0 − 1
.

This proves (3.3) and therefore Theorem 3.9. ❐

To better understand these atomic spaces as they are defined we find the dual of
one them, namely H1

B .
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Definition 3.10. The space BMOB is the set of all locally integrable functions
g such that there exists a constant C where(

1
|Q|

∫
Q
|g(x)− gQ|2 dx

)1/2
≤ CB(|Q|)

for all intervals Q ⊂ R. The smallest constant C such that this holds is called
the BMOB (semi) norm of g and is written ‖g‖BMOB . When B(x) = 1, then
BMOB = BMO.

Theorem 3.11. The dual of H1
B is BMOB .

This theorem is a consequence of Lemma 3.12, and Theorems 3.13 and 3.14
below.

Lemma 3.12. The set of all elements in H1
B given by finite sums is dense in H1

B
under its norm.

Proof. Let g ∈ H1
B where g = ∑∞

k=1 λkak. Let gn =
∑n
k=1 λkak be the

sequence of partial sums. We show that gn converges to g in the H1
B norm. By

definition we know that λk forms an `1 sequence. Hence, given ε > 0 there is an
N such that

∑∞
k=n |λk| < ε for all n ≥ N. But, by definition

‖g − gn‖H1
B
=
∥∥∥ ∞∑
k=n

λk ak(x)
∥∥∥
H1
B
≤

∞∑
k=n

|λk|.

Thus, gn converges to g in the H1
B norm. ❐

Theorem 3.13. Let f ∈ BMOB . The linear functional given by

`(g) =
∞∑
k=1

λk
∫
f(x)ak(x)dx = lim

n→∞

∫
f(x)

n∑
k=1

λkak(x)dx,

where g = ∑
λkak ∈ H1

B , is well defined and bounded on H1
B . Also, ‖`‖ ≤

C‖f‖BMOB .

Proof. Suppose g ∈ [0] the zero class in H1
B ; then ‖g‖H1

B
= 0. Given ε > 0,

there exist numbers µk and B-atoms ek such that
∑ |µk| < ε and g = ∑µkek. If

each ek is supported in Qk, then∣∣∣∣∫ f(x)ek(x)dx∣∣∣∣ ≤ (∫
Qk
|f(x)− fQk|2 dx

)1/2
‖ek‖2 ≤ C‖f‖BMOB .

Thus |`(g)| ≤ C‖f‖BMOB

∑∞
k=1 |µk| ≤ Cε and so `(g) = 0. This proves that `

is well defined. Now, showing that ` is bounded on H1
B is entirely similar. Take

g =∑λkak ∈ H1
B where

∑ |λk| ≤ C‖g‖H1
B
. Then, |`(g)| ≤

C‖g‖H1
B
‖f‖BMOB . ❐
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Theorem 3.14. If ` ∈ (H1
B)∗, then there exists a function f ∈ BMOB such that

`(g) =
∫
f(x)g(x)dx

for all g ∈ H1
B which are finite linear combinations of B-atoms. By Lemma 3.12 we

may extend ` to H1
B . Also, ‖f‖BMOB ≤ C‖`‖.

Proof. The proof of this theorem follows a standard proof for H1. A sketch
of it can be found in Stein [12, p. 143]. Let ` ∈ (H1

B)∗ have norm ‖`‖. Fix a
closed interval Q ⊂ R with length 2b. Define A(Q) = {g ∈ L2 : suppg ⊂ Q,

and
∫
g = 0}. The set A(Q) is a Hilbert space under the L2 norm. If g ∈ A(Q),

then ∥∥∥∥∥ g
‖g‖2b1/2B(b)

∥∥∥∥∥ = 1
b1/2B(b)

.

So, g is a multiple of a B-atom and

‖g‖H1
B
≤ ‖g‖2b1/2B(b).

If we restrict ` to A(Q), then |`(g)| ≤ ‖`‖‖g‖H1
B
≤ ‖`‖‖g‖2b1/2B(b) for all

g ∈ A(Q). Thus, the norm of ` on A(Q) is less than or equal to ‖`‖b1/2B(b).
By the Riesz representation theorem, there exists a function fQ ∈ A(Q) such that

`(g) =
∫
Q
fQ(x)g(x)dx

for every g ∈ A(Q) and where ‖fQ‖2 ≤ ‖`‖b1/2B(b). To each interval Q with
length 2b there is associated such a function fQ ∈ A(Q).

Suppose Q1 ⊂ Q2; then `(g) =
∫
Q1

fQ1(x)g(x)dx =
∫
Q1

fQ2(x)g(x)dx

for all g ∈ A(Q1). Hence, for any constant c we have∫
Q1

[fQ2(x)− fQ1(x)− c]g(x)dx = 0

for all g ∈ A(Q1). Since [fQ2(x) − fQ1(x)− (fQ2 − fQ1)Q1]χQ1
(x) ∈ A(Q1)

we must have ∫
Q1

|fQ2(x)− fQ1(x)− (fQ2 − fQ1)Q1|2 dx = 0.

Thus, fQ1 and fQ2 differ by a constant on Q1. In fact, fQ2(x) − fQ1(x) =
(fQ2 − fQ1)Q1 = fQ2

Q1
since fQ1 has mean-value zero on Q1.
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LetQj be an increasing sequence of intervals converging to R. Let fQj be the
function associated with the interval Qj . Let f(x) = fQ1(x) for x ∈ Q1 and
f(x) = fQj(x)− fQjQ1

for x ∈ Qj , j ≥ 2. A careful analysis shows that f is well
defined.

Now, let Q be an arbitrary interval and let g ∈ A(Q) where |Q| = 2b. We

know `(g) =
∫
Q
fQg, where ‖fQ‖2 ≤ ‖`‖b1/2B(b). But, we also know that

since Q ⊂ Qj for some j, fQj(x)− fQ(x) = fQjQ . So,

`(g) =
∫
Q
(fQj(x)− fQjQ )g(x)dx

=
∫
Q
(fQj(x)− fQjQ1

)g(x)dx

=
∫
f(x)g(x)dx.

Also, since f(x) − fQ = fQj(x) − fQjQ1
− fQ = fQ(x) + fQjQ − fQjQ1

− fQ, and

fQ = (fQj(x)− fQjQ1
)Q = fQjQ − fQjQ1

we have f(x)− fQ = fQ(x) and

(
1
|Q|

∫
Q
|f(x)− fQ|2 dx

)1/2
≤ C‖`‖B(|Q|)

because ‖fQ‖2 ≤ ‖`‖b1/2B(b) and B(b) ≤ 2B(2b). ❐

4. EXAMPLES OF H1
B AND BMOB

We have seen that, when B(x) = 1, H1
B and BMOB are the conventional spaces

H1 and BMO. We present some other examples of the spacesH1
B and BMOB here,

as well as some related spaces that have been studied by other authors.
Let B(x) = |x|α with 0 < α ≤ 1. For the purpose of this example we write

BMOB as BMOα and H1
B as H1

α. Let g ∈ BMOα; then by definition

(4.1)

(
1
|Q|

∫
|g(x)− gQ|2 dx

)1/2

≤ C|Q|α.

By the work of Meyers [7] and Campanato [4], the functions that satisfy (4.1)
are known to be the space of Lipshitz functions of order α when we consider two
functions that differ by a constant to be equal. Writing this quotient space as
Lip(α), we have

BMOα = Lip(α).

Any power of p, 1 ≤ p < ∞, in the mean oscillation on the left of (4.1) may be
used to characterize Lip(α). These results may be found in Garcia-Cuerva and
Rubio de Francia [6, p. 299], for example.
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The functions satisfying (4.1) with |Q|α replaced with |Q|−α, 0 < α < 1
2 ,

define the Morrey space L2,γ(R) where γ = 1 − 2α. See the paper of J. Peetre
[9, p. 72].

Regarding the continuity of the elements of BMOB we mention a result of
Spanne [11]. If B(x)/x is decreasing, as is the case for B ∈ B, and

(4.2)
1
|Q|

∫
|g(x)− gQ|dx ≤ CB(|Q|),

then g is necessarily continuous provided B(x)/x is integrable on [0,1]. Spanne
has also shown that if B(x)/x is not integrable on [0,1], then there exists a func-
tion g satisfying (4.2) that is neither bounded nor continuous.

Consider the atomic Hardy spaces Hp where 1
2 < p < 1. A function a is an

Hp atom if a is supported in an interval of length 2b and
(i) Support a ⊂ Q,

(ii)
∫
Q
a = 0,

(iii) ‖a‖2 ≤ b1/2−1/p.
Then, Hp is defined to be

Hp =
{ ∞∑
k=1

λkak(x) :
( ∞∑
k=1

|λk|p
)1/p

<∞
}
.

Here, the ak are Hp atoms and the λk are numbers. Now, if α = 1/p − 1 and
B(x) = |x|α, then B-atoms correspond to Hp atoms. It is known [6, p. 307] that
(Hp)∗ = Lip(α) and by Theorem 3.11 the dual space of H1

α is BMOα, which in
turn equals Lip(α). Therefore,

(H1
α)
∗ = Lip(α) = (Hp)∗

for 1
2 < p < 1 and α = 1/p − 1. However, H1

α is not equal to Hp, because Hp is
not complete whereas H1

α is complete.
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