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Renormalization-scale-invariant PQCD predictions for Re¿eÀ and the Bjorken sum rule
at next-to-leading order

Michael Binger and Chueng-Ryong Ji
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

David G. Robertson
Ohio Supercomputer Center, 1224 Kinnear Road, Columbus, Ohio 43212-1163

~Received 8 September 1999; published 9 May 2000!

We discuss the application of the physical QCD effective chargeaV , defined via the heavy-quark potential,
in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie pre-
scription for fixing the renormalization scales, the resulting series are automatically and naturally scale and
scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such
commensurate scale relations for thee1e2 annihilation ratioRe1e2 and the Bjorken sum rule. In both cases the
improved predictions are in excellent agreement with experiment.

PACS number~s!: 12.38.Bx, 12.38.Aw, 13.60.2r, 13.65.1i

I. INTRODUCTION

One of the most important problems in making reliable
predictions in perturbative QCD is dealing with the depen-
dence of the truncated perturbative series on the choice of
renormalization scalem and schemes for the QCD coupling
as(m). Consider a physical quantityO, computed in pertur-
bation theory and truncated at next-to-leading order~NLO!
in as :

O5as~m!F11„A1~m!1B1~m!nf…
as~m!

p
1•••G ,

~1.1!

wherenf is the effective number of quark flavors. The finite-
order expression depends on bothm and the choice of
scheme used to define the coupling. In fact, Eq.~1.1! can be
made to take on essentially any value by varyingm and the
renormalization scheme, which area priori completely arbi-
trary. The scale or scheme problem is that of choosingm and
the schemes in an ‘‘optimal’’ way, so that an unambiguous
theoretical prediction, ideally including some plausible esti-
mate of theoretical uncertainties, can be made.1

For any given observable there is no rigorously correct
way to make this choice in general. However, a particular
prescription may be supported to a greater or lesser degree
by general theoretical arguments and,a posteriori, by its

success in practical applications. From these perspectives, a
particularly successful method for choosing the renormaliza-
tion scale is that proposed by Brodsky, Lepage, and
MacKenzie~BLM ! @1#. In the BLM procedure, the renormal-
ization scales are chosen such that all vacuum polarization
effects from fermion loops are absorbed into the running
couplings. A principal motivation for this choice is that it
reduces to the correct prescription in the case of Abelian
gauge theory. Furthermore, the BLM scales are physical in
the sense that they typically reflect the mean virtuality of the
gluon propagators. Another important advantage of the
method is that it ‘‘pre-sums’’ the large and strongly diver-
gent terms in the PQCD series which grow asn!(asb0)n,
i.e., the infrared renormalons associated with coupling con-
stant renormalization.

Dependence on the renormalization scheme can be
avoided by considering relations between physical observ-
ables only. By the general principles of renormalization
theory, such a relation must be independent of any theoreti-
cal conventions, in particular the choice of scheme in the
definition of as . A relation between physical quantities in
which the BLM method has been used to fix the renormal-
ization scales is known as a ‘‘commensurate scale relation’’
~CSR! @2#. An important example is the generalized
Crewther relation@2,3#, in which the radiative corrections to
the Bjorken sum rule for deep inelastic lepton-proton scatter-
ing at a given momentum transferQ are predicted from mea-
surements of thee1e2 annihilation cross section at a com-
mensurate energy scaleAs}Q.

A useful tool in these analyses is the concept of an ‘‘ef-
fective charge.’’ Any perturbatively calculable observable
can be used to define an effective charge by incorporating the
entire radiative correction into its definition. Since such a
charge is itself a physical observable, perturbation theory in
terms of it, with the BLM prescription setting the scales, is
automatically renormalization scale- and scheme-
independent.

In this paper we shall use the heavy quark potential to
define an effective QCD couplingaV , and construct scale-

1The precise meaning of ‘‘optimal’’ in this context is connected to
the minimization of remainders for the truncated series. As is well
known, perturbation series in QCD are asymptotic, and thus there is
an optimum number of terms that should be computed for a given
observable. In general, very little is known about the remainders in
perturbative QCD~PQCD!; however, if we assume that PQCD se-
ries are sign-alternating, then the remainder can be estimated by the
first neglected~or last included! term. This term can take on essen-
tially any value, however, by simply varying the scale and scheme,
and thus its minimization is meaningless without invoking addi-
tional criteria.
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commensurate expansions of various other QCD observables
in terms of it. A recent calculation of the heavy quark poten-
tial at next to next leading order~NNLO! @4# allows the
relevant BLM scales to be determined through NLO. The
resulting relations can be tested directly for agreement with
available data, and in addition may be used to study various
phenomenological forms for the heavy quark potential at
moderate to lowQ2.

We begin by outlining the BLM approach and the idea of
commensurate scale relations. We also introduce physical
effective charges asociated with the heavy quark potential,
the e1e2 annihilation cross section and the Bjorken sum
rule. In Sec. III we then construct the NLO scale-
commensurate expansions of these observables in terms of
aV , and compare the results to the available data using a
simple parameterization foraV which is fit to a lattice cal-
culation. In general the agreement is excellent. In Sec. IV we
present some discussion of the results and our conclusions.

II. BLM SCALE FIXING

At lowest order the BLM approach is straightforward to
motivate. The term involvingnf in Eq. ~1.1! arises solely
from quark loops in vacuum polarization diagrams. In QED
these are the only contributions responsible for the running
of the coupling, and thus it is natural to absorb them into the
definition of the coupling. The BLM procedure is the analog
of this approach in QCD. Specifically, we rewrite Eq.~1.1!
in the form

O5as~m!F12S 3b0B1~m!

2 D as~m!

p
1•••G

3F11S A1~m!1
33B1~m!

2 D as~m!

p
1•••G , ~2.1!

correct to orderas
2 , where b051122nf /3 is the lowest-

order QCD beta function. The first term in square brackets
can then be absorbed by a redefinition of the renormalization
scale in the leading-order coupling, using

as~m* !5as~m!F12
b0as~m!

2p
ln~m* /m!1•••G .

~2.2!

That is, the BLM procedure consists of defining the predic-
tion for O at this order to be

O5as~m* !F11S A1~m!1
33B1~m!

2 Das~m* !

p
1•••G ,

~2.3!

where

m* [me3B1(m). ~2.4!

Note that knowledge of the NLO term in the expansion is
necessary to fix the scale at LO. Thus the scale occurring in
the highest term in the expansion will in general be un-

known. A natural prescription is to set this scale to be the
same as that in the next-to-highest-order term.

A very important feature of this prescription is thatm* is
actually independent ofm. @This follows from considering
them dependence ofB1(m). For a detailed discussion of this
point, see Ref.@1#.# Thus pQCD predictions using the BLM
procedure are unambiguous.

The same basic idea can be extended to higher orders, by
systematically shiftingnf dependence into the renormaliza-
tion scales order by order. Full details of this procedure may
be found in Refs.@5,6#. The result is that a general expansion

as~m!

p
1~A11B1nf !S as~m!

p D 2

1~A21B2nf1C2nf
2!S as~m!

p D 3

1••• ~2.5!

is replaced by a series of the form

as~m* !

p
1Ã1S as~m** !

p D 2

1Ã2S as~m*** !

p D 3

1•••.

~2.6!

In general a different scale appears at each order in pertur-
bation theory, and the BLM scales themselves are power
series in the couplingas . In addition, the coefficientsÃn are
independent ofnf ~by construction!, and so the form of the
expansion is unchanged as momenta vary across quark mass
thresholds. All effects due to quark loops in vacuum polar-
ization diagrams are automatically incorporated into the ef-
fective couplings.

As discussed above, one motivation for this prescription
is that it reduces to the correct result in the case of QED. In
addition, when combined with the idea of commensurate
scale relations, the BLM method can be shown to be consis-
tent with the generalized renormalization group invariance of
Stückelberg and Peterman@7#, in which one considers ‘‘flow
equations’’ both inm and in the parameters that define the
scheme@5#. This is not necessarily true of other methods for
determining the scales.

A very natural way of implementing the CSR idea is to
introduce a physical effective charge, defined via some con-
venient observable, for use as an expansion parameter. An
expansion of a physical quantity in terms of such a charge is
a relation between observables and therefore must be inde-
pendent of theoretical conventions, such as the renormaliza-
tion scheme, to any fixed order of perturbation theory. A
particularly useful scheme is furnished by the heavy quark
potentialV(Q2), which can be identified as the two-particle-
irreducible amplitude for the scattering of an infinitely heavy
quark and antiquark at momentum transfert52Q2. The re-
lation

V~Q2!52
4pCFaV~Q!

Q2 , ~2.7!

with CF5(Nc
221)/2Nc54/3, then defines the effective

chargeaV(Q). This coupling provides a physically-based al-
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ternative to the usual modified minimal subtraction (MS)
scheme. The other physical charges we shall consider here
areaR , defined via the totale1e2→X cross section:

R~s![3(
q

eq
2S 11

aR~As!

p D , ~2.8!

and ag1
, defined by the radiative correction to the Bjorken

sum rule:

E
0

1

dx@g1
ep~x,Q2!2g1

en~x,Q2!#[
1

6 UgA

gV
UF12

ag1
~Q!

p
G .

~2.9!

The perturbative expansions for these quantities through
NNLO may be found in Refs.@8# and @9,10#, respectively.

Such physical couplings are of course renormalization-
group-invariant, i.e.,m]aV /]m50. However, the depen-
dence ofaV(Q) on Q is controlled by an equation which is
formally identical to the usual RG equation. SinceaV is
dimensionless we must have

aV5aVS Q

m
,as~m! D . ~2.10!

Thenm]aV /]m50 implies

Q
]

]Q
aV~Q!5bs~as!

]aV

]as
[bV~aV!, ~2.11!

where

bs5m
]

]m
as~m!. ~2.12!

This is formally a change of scheme, so that the first two
coefficientsbV

(0)51122nf /3 andbV
(1)5102238nf /3 in the

perturbative expansion ofbV are the standard ones.

III. QCD PERTURBATION THEORY AND aV

A. BLM scale fixing for aV

The calculation of the heavy quark potential at NNLO in
Ref. @4# allows the BLM procedure to be applied through
NLO in commensurate scale relations involvingaV . As a
first step, we may apply the BLM procedure to fix the renor-
malization scales in the expression foraV in terms of the
conventionalMS coupling. The result is

aV~Q!

p
5

aMS~QV* !

p
1AVS aMS~QV** !

p D 2

1BVS aMS~QV*** !

p D 3

1•••, ~3.1!

where

AV52
2

3
CA , ~3.2!

BV5S 133

144
2

11

4
z31

1

4
p22

1

64
p4DCA

2

1S 2
385

192
1

11

4
z3DCACF , ~3.3!

ln~QV* /Q!52
5

6
, ~3.4!

ln~QV** /Q!52
217

192
1

21

16
z31S 105

128
2

9

8
z3D CF

CA
, ~3.5!

andCA5Nc . As discussed above, we takeQV*** 5QV** at
this order.

It is also useful to invert this, and expressaMS itself in
terms ofaV . In this case we obtain

aMS~Q!

p
5

aV~QMS
* !

p
1AMSS aV~QMS

** !

p
D 2

1BMSS aV~QMS
** !

p
D 3

1•••, ~3.6!

where

AMS5
2

3
CA , ~3.7!

BMS5S 2
5

144
1

11

4
z32

1

4
p21

1

64
p4DCA

2

1S 385

192
2

11

4
z3DCACF , ~3.8!

ln~QMS
* /Q!5

5

6
, ~3.9!

ln~QMS
** /Q!5

103

192
1

21

16
z31S 105

128
2

9

8
z3D CF

CA
.

~3.10!

B. e¿eÀ annihilation cross section

We next present the NNLO scale-commensurate expan-
sion of aR in terms ofaV . This is obtained by applying the
BLM procedure at NLO to the expansion of each of these
observables in theMS scheme, and then algebraically elimi-
natingaMS. The result is

aR~Q!

p
5

aV~QR* !

p
1ARS aV~QR** !

p D 2

1BRS aV~QR** !

p D 3

1•••, ~3.11!

where~for Nc53!
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AR5
25

12
, ~3.12!

BR5
97

72
2

9

4
p21

9

64
p41

10

d~r ! S 11

144
2

z3

6 D S ( qeqD 2

( qeq
2

,

~3.13!

ln~QR* /Q!52
23

12
12z31~3322nf !F2

119

864
1

p2

72
2

7

9
z3

1
2

3
z3

2G S aV~Q!

p D , ~3.14!

ln~QR** /Q!52
157

60
1

233

50
z322z5 . ~3.15!

In Eq. ~3.13!, d(r ) is the dimension of the quark representa-
tion, i.e., 3 forSU(3). This relation represents an unambigu-
ous, fundamental test of perturbative QCD which is indepen-
dent of renormalization scale or scheme.

In order to make a comparison to experimental data, we
will introduce a parametrization ofaV which is fit to lattice
data @11# in the moderate- to high-Q2 regime. Specifically,
we take

aV~Q!5
4p

b0lnS Q214mg
2

LV
2 D . ~3.16!

Asymptotically this reproduces the perturbative coupling,
while the effective ‘‘gluon mass’’mg results inaV becoming
essentially frozen forQ2<4mg

2 . This form can be motivated

on various theoretical grounds@12#, and it has also been
successful in phenomenological analyses@13#.

The parametersLV andmg
2 have been determined in Ref.

@13#, by fitting to a lattice calculation ofV(Q2) @11# at rela-
tively high Q2 and to a value ofaR advocated in@14#, using
Eq. ~3.11! at LO. They were found to beLV50.16 GeV and
mg

250.19 GeV2.
Note that in the beta functionb0 we use a ‘‘smeared’’

function for the number of flavors, although this only affects
the low-energy regime where several quark flavor thresholds
occur. This function is

nf~Q2!5(
f
E

0

1

dz
6Q2z2~12z!2

mf
21Q2z~12z!

, ~3.17!

and is motivated in Ref.@15#. The integration overz in Eq.
~3.17! leads to the explicit representation2 of the function
that is identical to theQ2 logarithmic derivative of the one-
loop massiveb-function presented in Ref.@15#. In Fig. 1 we
show nf(Q

2) in the low-energy region. We have takenms
50.15 GeV, mc51.9 GeV, mb54.5 GeV for the quark
masses. The resultingaV is shown in Fig. 2.

Note also that for lowQ2 the couplings, although frozen,
are large. Thus the NLO and higher-order terms in the CSRs
are large, and they do not give accurate results at low scales.
In addition, higher-twist contributions to the effective
charges, which are not reflected in CSRs relating them, may
be expected to be important for lowQ2. However, series
expansions in terms of physical charges are likely to be more
convergent than those cast in terms of unphysical couplings

2Note that *0
1dz„6z2(12z)2/@x1z(12z)#…5126x1„12x2/(1

14x)1/2
…ln(@(114x)1/211#/@(114x)1/221#).

FIG. 1. The momentum dependence ofnf(Q
2).
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such asaMS, which is singular at finite scales.3 Thus it is
quite possible that expansions of the type we are considering
can be extended to lower physical scales than series written
in terms ofaMS. In any case, we will not be directly con-
cerned with the low-Q2 regime here.

Before discussing the results, it is useful to understand
what improvements we can expect from the commensurate
scale relations. First of all, of course, we have a scale-
independent result, so aesthetically we have an advantage
over the conventional treatment. Moreover, because of this
we expect our result to be numerically more accurate than
previous results with the scale fixed to certain value. The
main applicability and usefulness of commensurate scale re-
lations is for the intermediate energy regime. Pertubation
theory is valid only above the characteristic QCD scale
LQCD , and since the commensurate scale analysis crucially
depends on the validity of perturbation theory, we don’t ex-
pect much improvement in the very low energy regime. Fur-
thermore, in the high energy limit the residual scale depen-
dent terms go to zero, so scale relations are meaningless. The
e1e2 annihilation data, as well as the Bjorken sum rule data
presented in the next section, lies in the intermediate energy
regime where we expect improved predictions.

Two additional modifications of Eq.~3.11! were per-
formed before comparing with data. First, we have included
the leading-order electroweak corrections to account for the
Z0 current, which is particularly important above 30 GeV. In
addition we have included the charm and bottom mass cor-
rections, which are important in the range 3–15 GeV. The
effect of these modifications is to replace the factor(qeq

2 in
Eq. ~2.8! by

(
q
A12

4mq
2

Q2 Feq
2S 11

2mq
2

Q2 D 12Re~r!eqcV
ecV

qS 11
2mq

2

Q2 D
1ur u2„~cV

e !21~cA
e !2

…S ~cV
q !2S 11

2mq
2

Q2 D
1~cA

q !2S 12
4mq

2

Q2 D D G , ~3.18!

where

cV
q5I 322eq sin2uW ,

cV
e52 sin2uW2

1

2
,

cA
q5I 3 ,

cA
e52

1

2
,

r 5
A2GMZ

2

Q22MZ
21 iM ZGZ

S Q2

e2 D
5

Q2

sin22uW~Q22MZ
21 iM ZGZ!

. ~3.19!

Here I 3 is the third component of the weak isospin of the
quark coupled toZ0 and the weak mixing angleuW is given

3For example, in the ’t Hooft schemeaMS has a simple pole at
Q5LMS .

FIG. 2. The effective chargeaV , as given by Eq.~3.16!.
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by sin2 uW50.22. The mass and the decay width ofZ0 are
given byMZ591.2 GeV andGZ52.5 GeV, respectively.

In Fig. 3, we show the commensurate scale result~3.11!
along with a representative subset of the available data@16#
in the energy range 8–60 GeV. We find our results to be in
excellent agreement with the data, as well as the standard
QCD predictions quoted by the Particle Data Group@17#
with the scale fixed to a certain value (LMS50.25 GeV). In
Fig. 4, we show our theoretical prediction and the data in the

2–7.5 GeV range. Again, we find very nice agreement with
the data, particularly considering that we have neglected cor-
rections from theJ/c(1S), c(2S), and other vector meson
resonances. Note that the data for 3.6 GeV,Q,7.5 GeV
has been subtracted by 0.84A124mt

2/Q2(112mt
2/Q2) to

account for hadronic production that proceeds via tau lepton
pairs, which the early experiments did not distinguish from
quark-hadron processes. The factor 0.84512(2/5)2 is the
probability that either tau will decay to hadrons.

FIG. 4. Scale-commensurate expansion ofaR in terms ofaV in the intermediate-energy regime.

FIG. 3. The scale-commensurate expansion ofaR in terms ofaV in the high energy regime. The solid line is given by Eq.~3.11!; the
dashed line is the prediction quoted by the PDG; the dotted line is the leading order result~with mass and electroweak corrections!.
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C. Bjorken sum rule

Finally we present the scale-commensurate expansion of
the Bjorken sum rule in terms ofaV at NNLO. The result is

ag1
~Q!

p
5

aV~Qg* !

p
1AgS aV~Qg** !

p D 2

1BgS aV~Qg** !

p D 3

1•••, ~3.20!

where

Ag5
13

12
, ~3.21!

Bg52
131

72
2

9

4
p21

9

64
p4, ~3.22!

ln~Qg* /Q!52
1

6
2

43

144S 112
2

3
nf D S aV~Q!

p D ,

~3.23!

ln~Qg** /Q!52
191

117
2

5

78
z31

30

13
z5 . ~3.24!

In Fig. 5 we show the commensurate scale result to
NNLO and the leading order perturbative result with the five
currently available data points. This plot strongly suggests
that the higher order PQCD corrections do indeed give the
correct convergence to the physical result. Our results may
also be compared with an analysis of the Bjorken sum rule
@10# using so-called analytic perturbation theory~APT! @21#.
In Ref. @10#, the authors show that by requiring the QCD
couplingas to be analytic, thereby removing unphysical sin-

gularities, they can obtain approximately scheme indepen-
dent results. Their plot of the correction to the Bjorken sum
rule, ag1

/p, is very similar to what we obtain using com-
mensurate scale relations.

IV. CONCLUSIONS

In this paper, we have applied the physical QCD effective
chargeaV , defined by the heavy quark potential, in calcula-
tions of thee1e2 annihilation cross section and the Bjorken
sum rule. Following the BLM procedure, we derived the
NNLO scale-commensurate expansions ofaR and ag1

in

terms ofaV and used these expansions to numerically com-
pute thee1e2 annihilation cross section and the Bjorken
sum rule. Using a phenomenological form for the effective
chargeaV @Eq. ~3.16!# which is consistent with the lattice
determination of the heavy quark potential, we obtain excel-
lent agreement between our results and the experimental data
in both cases. Furthermore, because of the scale indepen-
dence, we trust that our results are numerically more accurate
than previous results with the scale fixed to a certain value.
The application of scale-commensurate expansions to other
observables is forthcoming.
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FIG. 5. The dotted line shows the leading-order prediction for the Bjorken sum rule while the solid line includes the scale-commensurate
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Collaboration@20# ~stars!.
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