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Composite operator renormalization and the trace anomaly 

David  G. Rober tson  
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 7 April 1990; revised manuscript received 14 August 1990 

The general connection between the renormalization of elementary fields and couplings and of appropriate composite operators 
is discussed. A general method is presented for computing the anomalous dimension matrix of the lagrangian composite operators, 
to all orders in perturbation theory, in terms of the elementary beta functions and anomalous dimensions. The trace anomaly for 
a general field theory is determined. 

1. Introduction 

Although the trace anomaly has been worked out 
in specific field theories, and a connection between 
the conventional renormalization group (RG) pa- 
rameters and certain operator anomalous dimen- 
sions seems to be folklore, a precise and general for- 
mulation appears to be lacking. In this paper we relate 
the RG parameters of an arbitrary field theory to the 
anomalous dimension matrix of the lagrangian com- 
posite operators. 

We begin by recalling standard techniques [ 1,2 ] for 
expressing the Green functions of the lagrangian 
composite operators in terms of Green functions of 
the elementary fields alone. This correspondence is 
displayed for a general field theory, and allows the 
computation of the divergences of the operator inser- 
tions in terms of the conventional RG parameters. 
The result is a simple recipe for calculating, to all or- 
ders in perturbation theory, the anomalous dimen- 
sions of the lagrangian operators in terms of the or- 
dinary beta functions and anomalous dimensions. 

These anomalous dimensions are of interest for 
several reasons. The lagrangian operators can of 
course appear in various operator product expan- 
sions; their anomalous dimensions control the effec- 
tive scale dependence of the associated coefficient 
functions. In addition, the anomalous trace of the en- 
ergy-momentum tensor (EMT) is necessarily built 
up out of those operators appearing in the lagrangian. 
Understanding the general relation between the op- 

erator renormalization matrix and the conventional 
RG parameters allows us to determine the trace 
anomaly for an arbitrary field theory. This computa- 
tion is presented in section 3, along with some re- 
marks concerning multiplicatively renormalized and 
renormalization group-invariant operators, and the 
Callan-Symanzik equation. 

2. Renormalization of the lagrangian composite 
operators 

Throughout this paper shall we employ dimen- 
sional regularization, following the conventions of ref. 
[3]. 

We consider a generic theory of a set of fields {~,} 
in do (continued to do -2e )  spacetime dimensions. 
These may be scalar, spinor or gauge fields, under 
certain caveats to be detailed below. The lagrangian 
consists of suitable kinetic operators K,~ and a num- 
ber of interaction terms Vi, with couplings denoted 
gi. The vertex term Vi containsp~ powers of the field 
0,~ or its derivative, and the couplings are assumed 
for simplicity to be dimensionless; mass terms or 
other dimensionful couplings are easily incorporated 
into the analysis. 

Now, following e.g. the presentation of ref. [ 2 ] we 
can obtain functional differential equations relating 
the generating functionals of 1PI Green functions with 
a single zero-momentum insertion of K,~ or Vi to the 
generating functional of elementary 1PI Green func- 
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tions F[O;g]. For insertions of the kinetic operators 
Ks we have 

iF~[O;g] 

=(½ f d6xOot~-~ot--~ Ei Pigi~i) l"~[O;g], 
(2.1) 

while for the vertex operators Vi we find 

iFv,[O;g] =gi ~ F [ 0 ; g ] .  (2.2) 

Although these equations may be straightforwardly 
obtained using the (nonperturbative) techniques of 
ref. [2 ], we can understand them easily in terms of 
Feynman graphs. In eq. (2.1), the insertion of K,  es- 
sentially counts the number of 0~ lines in the graph 
at a given order of perturbation theory. This is 
achieved by the second term on the RHS of (2.1) (the 
factor ½ is to avoid double counting, since each inter- 
nal line connects two vertices); the first term re- 
moves the insertions from external lines. For the ver- 
tex operators the insertion simply counts the number 
of elementary vertices of the appropriate type. 

Let us demonstrate how eqs. (2.1) and (2.2) may 
be used to calculate the operator anomalous dimen- 
sions in a specific example. We consider the massless 
scalar 0 3 theory in six (continued to 6 - 2 e )  space- 
time dimensions, specified by the lagrangian 

f f  1(0 0 x2 g 0  3 =~ u / - ~  • (2.3) 

This theory is fairly sick, but is a useful toy. We de- 
note the lagrangian operators by K---½(0u0) 2 and 
V- (g/3!)0 3, and make the general remark that for a 
renormalizable theory the set oflagrangian operators 
at zero momentum is closed under renor- 
malization ~1 

We begin by writing the effective action as an ex- 
pansion in powers of (0u0): 

F°[Oo;g]= S d6x(A'½(OuOo)2-B g°03 + ...). 

(2.4) 

~ This is not generally the ease for gauge theories, but is true 
when quantized in background field gauge; these issues are 
discussed further below. 

Here 0o and gO are the bare field and coupling, re- 
spectively, and A and B are some (divergent) func- 
tions of gO. The renormalized effective action takes 
the form 

/-'r [ 0 ; g  ] =f'°[Zl/20;Zgg ] 
= ~  d6x(AZ'½(0u0)2-BZgZa/2g~-~-w3. +'")' 

(2.5) 

where we have introduced the renormalized field 0 
and coupling g defined by 00=ZI/20 and g°=Zgg. 
Renormalizing the theory consists of choosing Z and 
Zg so that Fr[0;g] is rendered finite; we shall define 
our renormalization scheme so that AZ=BZsZ3/2= 1. 
In addition, operator renormalization constants Zab 
are defined by the requirement that the renormalized 
generating functionals for operator insertions, de- 
fined by 

r~  =z~' r o  [ zl/20;Z~g] , (2.6) 

be finite (here ~a means {K, V} for a=  {1, 2}). 
Now, we can use eqs. (2.1) and (2.2) to compute 

the operator effective actions on the RHS of (2.6). 
For example, eq. (2.1) gives 

i F ° =  (½ ~ d6yO°(Y) 80o(y) 

2 g°0o3 +. . . )  X f d6x(A'½(OuOo) -B----~. 
g03 +...), 

(2.7) 

where 

A' o 0 - g  0-~- In A (2.8) 

and similarly for B. Eq. (2.2) likewise gives 

gO3 +...). 
i ro=  + T ,  

(2.9) 

Eqs. (2.7) and (2.9) then allow us to express the re- 
quirement that the RHS of (2.6) be finite as a matrix 
equation: 

Z -~  W=fini te ,  (2.10) 
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where 

W - = ( 1 - A  A ' ' -  I+B'3B' ) "  (2.11) 

A particular choice for the matrix of constants ap- 
pearing on the RHS of (2.10) is a choice of renor- 
malization prescription for the operator counter- 
terms. We choose the 2×2  unit matrix, so that, 
trivially, Z =  W. We note that the elements of W can 
generally be read off quite simply from the lagran- 
gian. We shall return to exploit this below. 

In dimensional regularization the operator anom- 
alous dimensions are determined by the simple poles 
in the Zab (see ref. [3] ): 

Fab= --g ~---gZ~, ) , (2.12) 

where 

z~ 
Zab ~- (~ab "~ ~ i C i 

Now, in obtaining the pole part ofeq. (2.11 ) we note 
that in minimal subtraction the difference between 
gO and g is itself of order 1/e. We may therefore ne- 
glect this distinction to obtain, for example 

o 0 ° 0Z(I) 
Res{g ~-6golnZ}=g 0g ' (2.13) 

where Z (1) is the residue of the simple pole in Z. With 
the standard expressions [ 3 ] for the ordinary beta 
function and anomalous dimension: 

f l=g ~gg( l )  , ~)= _ lg g ( l ) ,  (2,14) 

we thus arrive at the anomalous dimension matrix: 

[ 3 g ~  3 0 / f l '  9 0,~ 

= (2.15) 
o # oe " 

Fab [ 2 g ~  g ~ g ( g ) - - 3 g ~ g  J 

The application of this type of analysis to non-abe- 
lian gauge theories deserves some additional com- 
ment, as there are certain subtleties associated with 
the renormalization of composite operators in these 
theories. Briefly stated, the renormalization ofgauge- 
invariant operators requires the introduction of 
gauge-noninvariant counterterms. Furthermore, the 

computation of the anomalous dimensions of gauge- 
invariant operators requires that this noninvariant 
mixing be included in general [ 1,4]. This will typi- 
cally make the computation of the renormalization 
matrix prohibitively difficult (because the number of 
gauge-noninvariant operators whose mixing must be 
considered is usually huge) unless certain tricks are 
employed. The simplest of these tricks is to quantize 
the theory in the background field (BF) gauge [5]. 
In this formalism the gauge invariance of the theory 
is essentially manifest and no such noninvariant mix- 
ing occurs. 

This was the procedure used in ref. [ 2 ] to compute 
the anomalous dimension of the operator 
F Z -  l~a l~a~ =--u~-- . The residual gauge invariance allows 
the effective action to be expressed as a gauge-invar- 
iant functional of the gauge fields only; this is a much 
stronger constraint on the structure of the counter- 
terms than the usual BRST invariance alone. We em- 
phasize here that this issue is purely one of calcula- 
tional convenience. The analysis of ref. [ 2 ] could be 
pushed through in a covariant gauge, but various 
other operators would have to be included (includ- 
ing e.g., ghost operators [ 1,4] ). By working in BF 
gauge, we avoid these complications; operator renor- 
realization in gauge theory is then not particularly 
different from any other field theory, and the above 
techniques may be applied directly. 

As a simple application of the above results, let us 
now compute the trace and determinant of the anom- 
alous dimension matrix for our arbitrary theory. The 
trace turns out to have a pleasant expression in terms 
of the beta functions alone. 

From eq. (2.1) we find that each kinetic operator 
K= contributes to Z a diagonal term Z ~  given by 

Z,~,, = 1+ l ~ p,,g~ ° ~-~gaO In Z,, , (2.16) 

where Z,~ is the wavefunction renormalization con- 
stant for 0n. (We assume the previous renormaliza- 
tion convention, in which the functions appearing in 
the effective action times the relevant field and cou- 
pling renormalization factors are all equal to unity; 
see, e.g., eq. (2.5). ) Each vertex operator V~ likewise 
provides a term 

( ) o P,~gi In Z~ Z . = l -  g° 0 
(2.17) 
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where Zg~ is the coupling renormalization constant 
for gi. Eqs. (2.16 ) and (2.17 ) combine to give 

T r ( Z - I ) = -  ~i g°o~i lnZg,. (2.18) 

As before, in extracting the pole part ofeq. (2.18 ) we 
can neglect the distinction between bare and renor- 
realized couplings to obtain 

oz~ ) 
R e s { T r ( Z - 1 ) } = -  ~ g, Og--~ (2.19) 

Now, if we denote by (d~) the mass dimension of 
gO in do-2E dimensions, that is, gO =lta,~Zg, g~, then 
the RG parameters are given by 

0Zg() ) 
fli=gi ~k dkgk (2.20) Ogk ' 

OZ~ ~ 
)"~=-~ ~k dkgk---~gk (2.21) 

Similarly, for the operator anomalous dimensions we 
have 

Eqs. (2.19 ), ( 2.20 ) and (2.22) now combine to yield 

Tr F =  ~ g,~g~ ( ~ ) .  (2.23) 

This result holds for arbitrary theories of scalars, fer- 
mions, and gauge fields, with the understanding that 
BF gauge is to be employed. 

The determinant of F is also readily computed. As 
we shall see below, there always exist linear combi- 
nations of the lagrangian operators, closely related to 
the equations of motion, which are finite and so have 
zero anomalous dimension. The existence of zero ei- 
genvalues o f F  implies det F =  0. 

3. Multiplicatively renormalized operators and the 
trace anomaly 

We can also search for linear combinations of the 
lagrangian operators which are multiplicatively re- 
normalized or RG-invariant. For instance, it is easy 
to check that the operator ( 2 K -  3 V) in the 03 theory 
has zero anomalous dimension. At zero momentum 

this object is related to the equation of motion for ¢; 
more precisely 

" ~iSe (3.10) 2 K - 3 V =  d6xO(x) S0(x) 

(after an integration by parts ), where 5g is the action. 
The finiteness of this operator follows from the fact 
that it is essentially the canonical trace of the EMT. 

To construct the corresponding operators for the 
general theory, we expand eqs. (2.1) and (2.2) in 
powers of the fields 0,~. This gives relations between 
the 1PI n,-point functions: 

,,, ~ _0___0 '~ rt-p)o (3.2) 2i/'~:]"°= (n~ -~/ea~, ,  0gO j - -  , 

i/'~,Tp)o =,,9 ~ r(.p)o , o, 0g o , (3.3) 

where F < "p> stands for 1 '(n''n2,). Eqs. ( 3.2 ) and ( 3.3 ) 
combine to yield e.g. 

2 F ~  p)° + ~ p~F~7 p)° = in~F ('~)° . (3.4) 
i 

Now, since the RHS of (3.4) is made finite by ele- 
mentary wavefunction and coupling renormaliza- 
tions alone, the LHS must be made finite by these as 
well. Thus these combinations of operators are not 
renormalized. At zero momentum these operators are 
essentially the equations of motion for the fields ~ .  

We expect that there will be one other RG-invar- 
iant operator, namely the anomalous trace of the 
EMT. That this object should be invariant follows 
from the general properties of conserved currents: 
these must satisfy the nonlinear commutation rela- 
tions of the associated symmetry group so that their 
normalization is fixed. For the ¢~ theory is it simple 
to verify that the combination 

O=-2y[K]+(37- fl)[V] (3.5) 

satisfies/t 00/0/~=0 ~2. Here the square brackets de- 
note renormalized composite operators, defined by 
[(ga]=Zgb 1 (9 o (see eq. (2.6)) .  This is indeed the 
correct trace anomaly for this theory, as may be ver- 

~2 It is also easy to check that this is the only other RG-invariant 
linear combination of the lagrangian operators in the theory. 
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ified by explicitly constructing the EMT and taking 
its trace. 

In fact, we can perform this computation for the 
general theory almost as easily. We begin with the 
standard Noether expression for the EMT [ 6 ]: 

Ou~ = ~ [0(0~,~)(O,,O~,)]°-gu, ,~ ° . (3.6) 

Note that although the zero-momentum insertions of 
O~ are finite (after wavefunction and coupling con- 
stant renormalization), its constituents can be diver- 
gent. Taking the trace of (3.6), with g,,,gU"=do-2e, 
we obtain 

The term proportional to ¢ is the anomaly: 

0"" = 2 t..9 ~° . (3.7) 

This is to be regarded as a relation between operator 
insertions. Now Le= Z,(~, where a indexes both the 
{K,} and the { V~}. Renormalization results in 

O'~'=2 ~ [0,] ~b t-'aS ]" (3.8) 

The calculation o f  the pole part of Eb Zab is readily 
accomplished using eqs. (2.1) and (2.2). We shall 
denote the divergent function appearing with the op- 
erator (9, in the expansion of the effective action by 
Aa (recall eq. (2.4) ) and employ the usual renormal- 
ization conditions, that A~ times the relevant field and 
coupling renormalization factors are all equal to unity. 

Now, if b indexes one of the kinetic operators K~, 
then from eq. (2.1) we get a contribution 

Zota=--½ ~i Pig° ~----~ii lnAa, (3.9) 

where we have ignored an irrelevant (finite) term. If  
b indexes one of the V~ then we obtain 

0 
Zia=g°~goi ln Aa . (3.10) 

Combining eqs. (3.9) and (3.10) results in 

~b Zba=--~ X (t,-2)g°~O-~-61nA~, 
i ogi 

where t ~  Y~ pg is the total number of lines flowing 

into the vertex IT,.. Now, in do-2~ dimensions the 
mass dimension di of the coupling gO is just ( t i -  2 ). 
Thus 

b d, o 0 Z 2 g,  lnAo. (3.11) 

Consider the case when Ca is one of the K,. Then 
A a ----- Z ~ -  1 and 

0 (l 
~b Z ~ ) = I  ~ d ig i~g iZ° t '=-r~  (3.12) 

by eq. (2.21 ). Similarly, when (Pa is one of the V, then 
Aa= Z~ i ( ['[otZ~ p~/2) and we obtain 

~b Z~l '=- -½ ~ P i T ~  + 2~/" (3.13) 

Inserting eqs. (3.12) and (3.13) into (3 .8)we have 

O " " = - 2  ~7,~tK, d+~i ( - ~ p 5 7 , ~ +  Bi~tVd.  
• gi]  

(3.14) 

For the ¢6 a theory this is precisely eq. (3.5). 
As another example, consider pure SU(N) gauge 

theory. The lagrangian has the schematic form 

-- ~ (F~v) 2~ (OA)2+g(Oh)A2+g2a 4 . 

We can disregard the gauge-fixing and ghost opera- 
tors by considering only on-shell amplitudes. Now, in 
BF gauge/~ and 7 are related through 7= fl/g, so that 
each term in the lagrangian gets a factor - 2p/g. Thus 

# 
O""'=+ ~g iF21, 

which is the correct result for on-shell insertions [ 7 ]. 
(Actually there is a slight difference between our 
Noether EMT and the EMT which occurs in ref. [ 7 ]. 
However, the extra terms may be shown to make no 
contribution to the anomaly [ 8 ]. ) 

Note that in general certain dimension do opera- 
tors do survive at a RG fixed point but that by eq. 
( 3.4 ) these operators are finite. 

It should perhaps be emphasized that eq. (3.14) 
holds for zero-momentum insertions of O "" only. In 
some cases, however, it may be extended to arbitrary 
momentum transfer. This is possible if the same set 
of  lagrangian operators considered at q = 0 also forms 
a closed set of operators under renormalization for 
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q ~ 0. This has been established for gauge theories [ 7 ], 
but  is not  true in general.  Fo r  example,  in the 063 the- 
ory the opera tor  (0  020) mixes with K a n d  Vat  q ¢  0. 
(This  opera tor  differs from K only by a total  diver-  
gence and so may  be disregarded for q = 0 .  ) Hence it 
may appear  in the trace anomaly  at nonzero  
momentum.  

We conclude with a r emark  concerning the rele- 
vance o f  the trace anomaly  to the s tudy o f  the scale 
dependence  o f  renormal ized  field theories.  Making 
use of  the renormal ized  versions o f  eqs. (3 .2)  and  
(3.3)  the Ca l l an -Symanz ik  equat ion for the general 
theory may  be wri t ten in the form 

a ~ F('~) ( ap, gj) = iFto'~.) (0; ap, gi) 

+ (do- ~ d,~n,~)F'"°(ap, g,) . 

(3 .15)  

Here d ,  is the canonical  mass d imens ion  o f  the field 
0~- In this context  the trace anomaly  serves to gener- 
ate the anomalous  (i.e., noncanonica l )  terms in the 
scaling der ivat ive  o f  Green  functions.  

ful suggestions regarding this work. This research was 
suppor ted  in par t  by the Nat iona l  Science Founda-  
t ion under  Gran t  No. PHY86-1418 5. 
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