
Otterbein University Otterbein University

Digital Commons @ Otterbein Digital Commons @ Otterbein

Mathematics Faculty Scholarship Mathematical Sciences

2007

MARS: An Education-Oriented MIPS Assembly Language MARS: An Education-Oriented MIPS Assembly Language

Simulator Simulator

Pete Sanderson
Otterbein University, PSanderson@otterbein.edu

Kenneth Vollmar
Missouri State University, kenvollmar@missouristate.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/math_fac

 Part of the Computer Sciences Commons, and the Mathematics Commons

Repository Citation Repository Citation
Sanderson, Pete and Vollmar, Kenneth, "MARS: An Education-Oriented MIPS Assembly Language
Simulator" (2007). Mathematics Faculty Scholarship. 5.
https://digitalcommons.otterbein.edu/math_fac/5

This Conference Proceeding is brought to you for free and open access by the Mathematical Sciences at Digital
Commons @ Otterbein. It has been accepted for inclusion in Mathematics Faculty Scholarship by an authorized
administrator of Digital Commons @ Otterbein. For more information, please contact
digitalcommons07@otterbein.edu.

https://digitalcommons.otterbein.edu/
https://digitalcommons.otterbein.edu/math_fac
https://digitalcommons.otterbein.edu/math
https://digitalcommons.otterbein.edu/math_fac?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.otterbein.edu/math_fac/5?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons07@otterbein.edu

MARS: An Education-Oriented MIPS Assembly Language
Simulator

Dr. Kenneth Vollmar
Missouri State University
Springfield, MO 65897

417-836-5789

KenVollmar@missouristate.edu

Dr. Pete Sanderson
Otterbein College

Westerville, OH 43081
614-823-1317

PSanderson@otterbein.edu

ABSTRACT
We describe the implementation of “MARS,” a GUI, Java-based
simulator for the MIPS assembly language. MIPS, the computer
architecture underlying the simulated assembly language, is
widely used in industry and is the basis of the popular textbook
Computer Organization and Design [6], used at over 400
universities. The MARS simulator has been implemented with
characteristics that are especially useful to undergraduate
computer science students and their instructors.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General –
Hardware/software interfaces, Instruction set design (RISC),
Modeling of computer architecture.

General Terms
Languages

Keywords
Architecture, assembly language, simulation, MIPS

1.INTRODUCTION
The MIPS RISC architecture and corresponding assembly
language use a limited number of instruction formats. Typical
student programs may use register-to-register, load/store, branch,
jump, system call, and floating-point instructions. Thirty-two
general-purpose registers are available for integer operations
(some have dedicated uses), as are thirty-two single-precision
floating point registers. MIPS is a clean design with simple
instructions, and is very popular in industry as well as academia.
The widely-used Computer Organization and Design [6] text is
based on the MIPS architecture and instruction set. Since
computer science and computer engineering departments may not
have adequate access to MIPS equipment to support laboratory
activities, software-based MIPS simulators may be used.

Additional reasons for using simulation software in an
organization and architecture course are described in [9], and two
issues of the ACM Journal of Educational Resources in
Computing (JERiC) were devoted to computer architecture
simulators for educational purposes [10][11]. The SPIM [5]
simulator is bundled with Computer Organization and Design
and described in its Appendix.
Our goal for this project was to create an alternative to SPIM
specifically for the needs of typical undergraduate students and
their instructors. It should be useful in courses such as computer
organization and architecture, assembly language programming,
and compiler writing. The resulting simulator is called MARS
(MIPS Assembler and Runtime Simulator) [8]. MARS is an
Integrated Development Environment (IDE) controlled by a
modern GUI whose features include:

• control of execution speed, including single step at variable
speed (slider bar controls the number of instructions per
second)

• thirty-two registers visible at the same time, selectable via
tabbed interfaces,

• “spreadsheet” (WYSIWYG) modification of values in
registers and memory,

• selection of data value display in decimal or hexadecimal,
• resizable windows,
• “surfing” through memory using buttons to change display to

next/previous, stack location, global partition, and the start of
the memory segment,

• toolbar icons for every menu item
• an integrated editor and assembler as part of its IDE.

The MARS simulator implements the educationally important
portions of the MIPS instruction set utilized by Computer
Organization and Design Third Edition (COD3) [6]. Specifically,
the MARS simulator implements:

• All the instructions in the left-hand column of COD3 Figure
3.24, p. 226, which are the primary concentration of the text.

• All the pseudo-instructions in the right-hand column of
COD3 Figure 3.25, p. 227.

• All of the instructions in the right-hand column of COD3
Figure 3.24, p. 226 (MIPS arithmetic core) and left-hand
column of COD3 Figure 3.25, p. 227 (remaining MIPS-32).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'06, March 3-5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

• The seventeen syscalls in COD3 App. A-48, including file
open, read, write, and close.

Instructions not yet implemented in MARS include some pseudo-
instructions and other instructions expected to be more of
professional than educational interest.
The MARS simulator operates under either GUI or command-line
modes of operation. Students use primarily the GUI mode in
either “go” or “single step” execution for assembly code creation
and debugging. Instructors have the option of running the
simulator from an OS shell or a batch command file, to facilitate
execution of several test cases of all student’s programs in
sequence for grading. Command-line arguments are used to
request the output of particular registers or memory locations to
verify program results.
The MARS simulator is written in Java 1.4.2, using standard
techniques of human-computer interaction via its Swing and AWT
packages. Standard icons have been obtained from the Java look
and feel Graphics Repository [7].

2.MARS OPERATION
Students will typically use MARS to compose an assembly

language program using the editor, assemble it, then execute the
assembled program all at once or step-by-step using the facilities
of the execute pane. These operations are illustrated and
described below.

The MARS editor is an ASCII-oriented text editor that operates
much like Window's Notepad. Figure 1 shows the active editing
pane. The first two groups of toolbar icons are used with the
editor. The first group corresponds to the File menu and includes
file options such as New, Open, and Save. The second group
corresponds to the Edit menu and includes operations such as Cut,
Copy and Paste. Menu items and their corresponding toolbar
buttons are enabled and disabled as appropriate.

To assemble the program, the user selects Assemble from the Run
menu or clicks the wrench toolbar icon. A successful assembly
causes the Execute pane to come forward as shown in Figure 2.
An unsuccessful assembly displays appropriate messages and line
numbers in the console window at the bottom of the screen.

Figure 1. MARS editor window is active (“Edit” tab is foremost).

The Execute pane contains several windows. The Text Segment
window is front and center. It displays both the source and binary
code of the assembly program, including the expansion of pseudo-
instructions (the la and li instructions in Figure 2). A

breakpoint can be set at any instruction using the check box in the
leftmost column. When stepping through program execution
manually or at reduced run speeds, the next instruction to be
executed is highlighted.
The Data Segment display illustrated at the bottom of Figure 2
shows the program's data storage area in a scrollable window. Its
lower border contains icons to control display of memory contents
at special locations such as the stack or heap, and check boxes to
display memory addresses and values in either decimal or
hexadecimal format. The contents of a memory word can be
directly edited at any time by double-clicking on its cell and
entering the desired value in either decimal or hexadecimal
format.
Symbol table information is displayed in the Labels window.
This is relatively less important and the window may be closed to
allow more space for the Text Segment display.

Registers are permanently displayed to the right of the Execute
pane in a vertically oriented window. This can be seen in the
right side of Figure 1. As with memory, values are editable and
display format is selectable. There are separate tabs for the

general purpose registers, the floating point registers of
Coprocessor 1 and the exception registers of Coprocessor 0.
Another permanent display is the console window on the lower
portion of the screen. It includes two tabs, one for MARS
messages such as assembly errors and another for runtime input
and output generated by MIPS system calls. Each tab is activated
when text is written to it.

3. SPIM AND OTHER MIPS SIMULATORS
A number of MIPS simulators have been developed over the
years. Most can be classified by a small number of categories:
those designed for research use (e.g. MIPSI), those that focus on
certain MIPS architectural features such as pipelines (e.g.
WebMIPS [2], SmallMIPS, RTLSim), those that depend on SPIM
(e.g. MIPSASM, TinyMIPS), and general purpose simulators.
Examples of the latter include MipsIt [3] and SPIM [5]. Most

Figure 2. MARS execution window is active (“Execute” tab is foremost and the execution toolbar icons are active).

MIPS simulators include features for visualizing and/or animating
MIPS components. MARS and SPIM do not.

The COD3 textbook and companion website refer to the SPIM
simulator, which is available on its bundled CDROM or from the
web. SPIM is without doubt the most widely known and used
MIPS simulator, serving both education and industry. MARS has
been designed as an alternative to SPIM to meet the needs of
typical undergraduate courses. A comparison of some education-
oriented characteristics of SPIM 7.1 to MARS 2.0 follows.

• The SPIM user interface has one window split into five
scrollable but non-resizable panes. Using PCSPIM on a 19”
monitor, at most nine lines of source code are visible at a
time. MARS uses resizable windows and tabbed panes to
more easily focus on memory, register or program contents.

• Several steps are required to modify register or memory
values in SPIM: calling up a pop-up window, typing the
register or address, and specifying the new value. This is
time-consuming and error-prone. MARS features
WYSIWYG on-the-spot modification.

• Similarly, SPIM’s breakpoints are set by calling up a pop-up
window and typing the breakpoint location. MARS features a
check box beside each line of code to set and remove
breakpoints immediately.

• SPIM permits simulated execution to proceed in "run",
"single step" or "multiple step" mode. MARS permits the
first two, plus offers a variable-speed timed mode (up to 30
instructions per second) with interactive display update,
speed adjustment, and WYSIWYG value modification. See
slider in upper right of Figure 1. When set to maximum
speed, there is no interaction until the program terminates or
the Pause or Stop button is selected.

• SPIM does not include an integrated editor, so files must be
edited by an external application. You may however easily
re-load such a file. MARS includes a basic text editor.

In summary, support for interactive testing and debugging is one
of MARS greatest strengths.

The MARS text editor currently provides Notepad-like
functionality. Some contextual help is provided by tool tips that
appear when the mouse is hovered over the always-present
Register window. Thus MARS provides limited support during
the program composition phase. This need can be addressed by
commercial editors such as Downcast Systems' MIPSter [4].

4.OTHER EDUCATION-ORIENTED
FEATURES AND DETAILS
We have largely achieved our original MARS project goal, which
was to develop a viable alternative to SPIM for typical
undergraduate use. In other words, to provide a tool that
implements the important MIPS instructions (those covered in
COD3) through a portable and student-friendly IDE.
Along the way, we realized that through MARS we could and
should achieve more significant contributions to assembly
language and computer organization/architecture education. Here
we introduce two aspects of MARS implementation that may
represent its larger contribution: external instruction set

specification, and tool plug-in capability. Both are partially
achieved at this time.
The simplicity and regularity of the MIPS instructions permit the
separation of the specification of MIPS instructions from MARS
source code. The specification for each instruction consists of:

• an example usage of the instruction
• the instruction format
• a template of the generated 32 bit machine instruction with

operand positions indicated
• a Java method to simulate the execution of the instruction

All except the last are strings that may be placed in a textual
configuration file for loading when MARS is launched. Similarly,
a separate text file is used to specify MIPS “pseudo-instructions”
(a.k.a. macro instructions). Pseudo-instructions are expanded into
one or more native MIPS instructions by the assembler. For each
pseudo-instruction, the text file contains a specification consisting
of an example usage followed by a tab-separated list of native
instructions into which it will be translated with appropriate
operand substitution.
These implementation features could be utilized by instructors
and students to design and implement a customized MIPS-like
instruction set, then use MARS to assemble and simulate
programs written in the new language. Custom simulated native
and pseudo instructions are defined by adding the properly
formatted specifications into the configuration. Instructors in
compiler writing courses may also use this capability to define
and implement a simplified target assembly language for student
compilers.
Because this capability was not part of the original design, the
assembler's tokenizer is not table-driven and thus any customized
instruction set would have to follow MIPS lexical formats. This
is an issue we would like to address in the future. Nonetheless,
we are very excited by the possibilities this capability presents in
the classroom.
The tool plug-in capability permits the definition of customized
bots, animations, or any number of other useful tools to be
controlled by a MIPS program during MARS simulation. A tool
“observes” MARS memory locations and reacts appropriately in
response to data changes in the memory-mapped IO locations
defined for this tool. The source code of a tool is separate from
the source code of MARS.
Using a dynamic class-loading technique from game programming
[1], any externally-compiled class which implements a certain
Java interface and resides in the tools folder will be detected and
loaded at MARS launch and added to its Tools menu (see Figure
1). User selection of that Tools menu item will invoke a particular
interface method, which will typically establish itself as an
Observer of MARS memory locations. A MIPS program will
read and write memory locations and the tool will respond
accordingly.
For instance, a “scrolling marquee” tool could graphically
simulate a rectangular array of LEDs in which an address
represents a vertical column of eight LEDs and an 8-bit data value
represents the on/off values of each of those LEDs. A MIPS
program could implement a scrolling marquee on the LED array
by writing to two memory locations to specify LED address and
value. The tool has the responsibility of graphically displaying the

LEDs, including the accurate modeling of LED illumination and
persistence. The MIPS program has the responsibility of
determining the 8-bit values needed for the alphanumeric data,
and refreshing the data in the memory-mapped IO locations at the
proper rate for the scrolling motion.
We have used this technique to implement a MARSBot similar to
[12] for display of the motions of a simulated robot. Interfacing
with physical hardware is possible using a tool which writes and
reads an external port of the MARS host computer. One of us has
proposed a sabbatical project to develop a virtual world using this
capability.

5.STUDENT EVALUATIONS OF MARS
Our computer organization students have used MARS for two
semesters now. To rigorously assess our project goal of MARS as
a viable alternative to SPIM would require the same group of
students to be introduced to both simulators simultaneously and
equally – an unrealistic and ineffective use of class time. We
attempted to gauge student’s preferences between the MARS and
SPIM simulators by asking them to complete an anonymous, non-
graded comparison of the use of SPIM 7.1 and MARS on one of
their own programs from earlier in the semester. We disclosed our
own involvement with MARS and asked the students to
objectively compare the two.
In the survey that followed, students strongly preferred MARS to
SPIM, citing most often user-interface aspects such as breakpoints
and icon control. The students’ description of simulator
characteristics which contribute to the learning of an assembly
language seemed to focus on single-step execution and convenient
display of information pertinent to the current instruction. Most of
the aspects of MARS for which improvements were requested
have been implemented in MARS 2.0, including register display
layout, floating-point instructions, and hot key control of common
operations.

6.AVAILABILITY AND FUTURE PLANS
We have ambitious plans for expanding MARS over the coming
year. As of this writing, MARS implements 98 MIPS32 native
instructions, 36 pseudo-instructions, and the 17 system calls
described in COD3 Appendix A. We plan to continue
implementing the remaining instruction set. Other plans include
improving debugging support through such features as
highlighting of memory/register contents modified in step-by-step
execution, and the ability to undo execution steps.
As mentioned above, we plan to develop a virtual world that can
be controlled by an executing MIPS program, although the details
have not yet been worked out. We would like to improve support
for program composition through syntax highlighting and

autocompletion a la MIPSter but this is a lower priority. A
number of other features may be implemented or improved as
time and resources permit.
The MARS jar file is available for downloading at
http://www.cs.missouristate.edu/~vollmar/MARS/.

7.REFERENCES
[1] Brackeen, David, Barker, Bret, and Vanhelswue, Laurence,

"Developing Games in Java". New Riders Publishing, 2003.
[2] Branovic, I., Giorgi, R. and Martinelli, E., WebMIPS: A

New Web-Based MIPS Simulation Environment for
Computer Architecture Education, Workshop on Computer
Architecture Education, 31st International Symposium on
Computer Architecture, Munich, Germany, 2004.

[3] Brorsson, M., MipsIt - A Simulation and Development
Environment Using Animation for Computer Architecture
Education, Workshop on Computer Architecture Education,
29th International Symposium on Computer Architecture,
Anchorage AK, 2002.

[4] Downcast Systems, MIPSter 2.0,
http://www.downcastsystems.com/mipster/, retrieved 21
November 2005.

[5] Larus, J., SPIM: A MIPS32 simulator,
http://www.cs.wisc.edu/~larus/spim.html, retrieved 21
November 2005.

[6] Patterson, D., and Hennessy, J., Computer Organization and
Design: The Hardware/Software Interface, 3rd edition, San
Francisco, CA: Morgan Kaufmann, 2004.

[7] Sun Microsystems, Java look and feel Graphics Repository,
http://java.sun.com/developer/techDocs/hi/repository/,
retrieved 21 November 2005.

[8] Vollmar, K. and Sanderson, P., A MIPS Assembly Language
Simulator Designed For Education. The Journal of
Computing Sciences in Colleges, Vol. 21, No. 1, 2005.

[9] Wolffe, G., Yurcik, W., Osborne, H. and Holliday, M.,
Teaching Computer Organization/Architecture With Limited
Resources Using Simulators, ACM SIGCSE Bulletin 34, (1),
176 - 180, 2002.

[10] Yurcik, W. (guest editor), ACM Journal on Educational
Resources in Computing, Vol. 1, No. 4, December 2001.

[11] Yurcik, W. (guest editor), ACM Journal on Educational
Resources in Computing, Vol. 2, No. 1, March 2002.

[12] Zilles, C., SPIMbot: an engaging, problem-based approach
to teaching assembly language programming. ACM SIGCSE
Bulletin 37, (1), 106 - 110, 2005.

	MARS: An Education-Oriented MIPS Assembly Language Simulator
	Repository Citation

	1.INTRODUCTION
	2.MARS OPERATION
	3. SPIM AND OTHER MIPS SIMULATORS
	4.OTHER EDUCATION-ORIENTED FEATURES AND DETAILS
	5.STUDENT EVALUATIONS OF MARS
	6.AVAILABILITY AND FUTURE PLANS
	7.REFERENCES

