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Abstract  

Binary logistic regression was used to study the relationship between high school math 

course selection and retention rates at Otterbein University. Graduation rates from postsecondary 

institutions are low in the United States and, more specifically, at Otterbein. This study is 

important in helping to determine what can raise retention rates, and ultimately, graduation rates. 

It directs focus toward high school math course selection and what should be changed before 

entering a post-secondary institution. Otterbein will have a better idea of what type of students to 

recruit and which students may be good candidates with some extra help. Recruiting is 

expensive, especially when the main purpose is having a higher retention rate because it leads to 

more funding and a more attractive appearing school to incoming students (Siekpe & Barksdale, 

2013).   
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HIGH SCHOOL COURSE SELECTION AND RETENTION RATES   

Explaining enrollment, retention, and graduation rates has been a subject on which many 

researchers (Barron, Elliot, Harackiewicz, & Tauer, 2002; Boone et al., 2012; Shepler &  

Woosley, 2011; Talbert, 2012) have focused their attention. Although about 70% of North 

American high school graduates enroll in post-secondary institutions, not all of them graduate 

with a degree (Boone, et al., 2012). Otterbein’s graduation rate is about 58.7% which is a little 

higher than the national average of about 49% (College Factual, 2014)
1
.  

There is no one solution to raise retention rates as college students vary tremendously on 

the individual level. Since there are also many factors that can affect retention rates, it would be 

impossible to have one solution to control any and all circumstances affecting post-secondary 

retention rates. It is important to widen the perspective and focus on factors that affect students at 

all universities: institution-wide level factors.   

 Academic and social factors are the main predictors of college success (Boone, et al., 

2012; Mbuva, 2011). Academic factors include high school GPA, standardized test scores, and 

other factors of past academic performance (Mbuva, 2011). Academic factors are highly 

correlated with retention rates at post-secondary institutions (Mbuva, 2011). The top four 

measures used to predict student retention are all academically related: grades in college 

preparation courses, strength of curriculum at a student’s high school, standardized test scores 

(ACT or SAT), and a student’s GPA in high school (Radunzel & Noble, 2013). Social factors 

include a student’s ethnicity, socioeconomic status and whether they are a first generation 

student; some social factors classify students as at-risk, meaning they are less likely to retain.  

                                                 
1
 These percentages are based on earning a degree within 150% of the expected time (three years for a two year 

degree and six years for a four year degree).   
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Paying attention to the important factors that affect whether or not a student thrives is essential to 

raising graduation rates from post-secondary institutions. Knowing which factors are important is 

a challenge by itself. Past research is helpful when determining whether certain factors are 

powerful and what additional factors could be studied.  

Radunzel and Noble (2012) indicate that the combination of ACT composite scores and 

high school GPA improved prediction accuracy. According to Harackiewicz et al., the two key 

predictors for student success are standardized test scores and their prior academic performance 

(2002). These predictors have been shown to be independent of each other, meaning that prior 

academic performance does not cause or rely on standardized test scores, and to be positive 

predictors of college success (Harackiewicz, J., et al., 2002). Radunzel and Nobel (2013) indicate 

that including test scores increase the prediction accuracy over using high school GPA as a 

predictor alone. Noble (2003) indicated that there is a difference among high schools (i.e. rigor of 

classes, grading scale), so using a standardized test score would reflect different educational 

preparation and readiness of the student more accurately than HSGPA alone. It was also shown 

that students with higher ACT composite scores and high school grade point averages have 

greater college success rates than those with lower composite scores or high school GPAs  

(Radunzel & Noble, 2012). There is a lot of research that proves ACT composite scores and  

HSGPAs as valid measures of early college success (Allen, Robbins, Casillas & Oh, 2008; 

Harackiewicz, J. et al., 2002; Radunzel & Noble, 2012), which is why these predictors will be 

included in this research as independent variables.   

High school GPA has a higher correlation than standardized test scores in predicting first 

year GPA (Sawyer, 2013). Test scores when used alone have a correlation of .35, HSGPA has a 

correlation of .36 and the combination of the two have a correlation of .46 (Sawyer, 2013).  
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Standardized test scores add incremental predictive validity when predicting first year GPA 

(Sawyer, 2013). Institutions have different levels of selectivity and therefore have different 

definitions of college success. Institutions that are highly selective define success with a higher 

first year GPA (3.0) and would be more likely to use standardized test scores when making 

predictions about incoming students (Sawyer, 2013). Students with high GPAs and high 

standardized test scores would be more likely to have long-term success (where long-term 

success is defined as graduating or retaining until degree completion). While long-term success 

is important to post-secondary institutions, Otterbein is not a highly selective school so would 

select applicants that are more likely to succeed in the short term (i.e. retain past first year) 

(Sawyer, 2013).   

Math education in the United States is not comparable to other countries; our curricula 

are not as rigorous (Abraham et al., 2014).  To change this, children should be encouraged in 

math from a young age. The way in which children are taught math should be changed in a way 

to help children appreciate and understand the importance of mathematics (Abraham et al., 

2014). A higher standard for mathematics education in the United States would allow more 

opportunities for students to work in careers in STEM fields, which are typically higher paying 

jobs (Abraham et al., 2014).   

Students that are not ready for college level mathematics are more likely to not succeed 

(Abraham et al., 2014). Introduction to mathematics courses are in almost all of college 

curricula; they are also among the highest failure rates (Daugherty et al., 2013). High failure rates 

among introduction courses would lead to a low first year GPA, which is a good predictor of 

retention (Daugherty et al., 2013). Since mathematics is an important predictor of success, it is 

included in this study as an independent variable.   
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There is also a divide in gender expectations in regards to mathematics. Although 

Otterbein is predominantly female, the math courses and majors are overwhelmingly dominated 

by male students. Women in America are an underrepresented population, especially in STEM 

fields (Bailey et al., 2014). Only about 20% of engineering degrees are earned by women (Bailey 

et al., 2014). Women tend to have lower self-efficacy in hard science fields because of this 

gender discrimination (Bailey et al., 2014). There may be some interaction between gender and 

the level of math courses when predicting retention.   

Fiscally speaking, universities should also be concerned about raising retention rates.  

Tuition, dollar aid to students, and faculty salaries are high correlated with freshman retention 

(Webster & Showers, 2011). Colleges receive more outside funding if they have higher retention 

rates (Anstine, 2013). High attrition rates reflect poorly on universities and also lead to lost 

revenue (O’Keefe, 2013). Colleges look more attractive to prospective students and outside 

funding sources if there are high retention rates.   

Enrollment officers at colleges and universities spend a lot of money and time recruiting 

and enticing students that are more likely to retain and eventually graduate from their respective 

college or university (Sawyer, 2010). It costs less to retain a current student than to recruit a new 

one (Webster & Showers, 2011). The two common goals for admission offices are to help 

enrolled students succeed academically and also to find out which applicants could potentially 

benefit from learning at the university and enroll as many as possible (Sawyer, 2010). To put it 

simply, recruiters are interested in success and accuracy. Sawyer (2010) defines academic 

success as retention through the first year and overall first year GPA; he also says that high 

school GPA is largely accurate, in fact it is more accurate than admissions test scores, when 

predicting freshman year GPA (2010). Enrollment officers take all of this research into account 

when looking at prospective students because high retention rates improve a university’s ranking  



HIGH SCHOOL COURSE SELECTION AND RETENTION RATES   5  

  

(Goodstein & Szarek, 2013).  

I added to this body of knowledge of factors that affect retention rates by analyzing a 

certain population of students at Otterbein University using logistic regression. I studied the 

relationship between high school math course selection and other factors (ACT composite score, 

high school GPA, gender, academic rank) and retention rates at Otterbein University. There has 

been past research that taking rigorous college prep mathematics courses is associated with high 

ACT composite scores (Noble & Schnelker, 2007). Since ACT composite scores are a good 

predictor of college success, it is logical to make connections between college prep mathematics 

courses and college success. Using past research to guide my hypothesis, I believe participants 

that have taken more math courses in high school will have a higher likelihood of retention at 

Otterbein University.   

Method  

Participants  

  Two-hundred-seventy-five first-time freshmen entering Otterbein between fall semester  

2011 through fall semester 2013 were used in this data sample retrieved from Otterbein’s 

admission office. These participants had an academic rank, assigned by the admissions office, of  

0 or 1. Academic rank is based on the participant’s college admission test scores, their high 

school GPA, and their high school rank percentile. The range for academic rank is from zero to 

five, with zero being the lowest academic rank. The sample that was used for analyses included 

the two lowest numbers on the range for academic rank. Students with academic ranks of 0 or 1 

were explained to be at an increased risk of underperformance in academics and likely in need of 

remedial classes. The data included 167 male and 108 female participants. Since the population 

at Otterbein is mostly white, the sample was divided into 158 white and 117 non-white students 

(as opposed to classifying every participant by ethnicity or race), so that none of the participants 
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would be identifiable. This analysis was performed on archival data from the admissions office, 

no recruiting was necessary.   

Measures  

  Before the data was received, Otterbein’s IRB approved this study and a confidentiality 

agreement was signed between the researcher and the admission office. The data was received on 

a flash drive from Debbie Crouse in Otterbein’s admission office. Many variables were available 

to use, including race (white or non-white), sex, academic rank (0 or 1), and a list of all math 

courses a participant took in high school. Other factors included were the start term for each 

participant and whether the participant was here for first, second, and/or their third fall semester. 

The number of math courses taken in high school was included; this number was obtained from a 

simple formula in excel that counted the number of math classes listed in another column. The 

maximum possible number of math courses taken in high school for all participants was six.    

The sample had some missing data where participants either took the SAT instead of the 

ACT or vice versa. A macro was written using a concordance table, obtained from the ACT 

website (Compare ACT and SAT Scores, 2015) to convert the scores. According to the 

concordance table, there is no true equivalent for the scores since the tests’ material differs in 

content (Understanding Concordance, 2015). The concordance table is used for approximations.  

The table is used in this study to fill in all the blank spaces for standardized test scores for all 

participants; the SAT critical reading and math (SATCRM) and ACT composite (ACTC) scores 

could then be compared using logistic regression to see if there was a significant difference in 

predicting power between SATCRM and ACTC scores.  
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Procedure  

  Data was analyzed with logistic regression using Minitab 17. Logistic Regression was 

chosen because of the binomial characteristic of the dependent variable (students were either 

enrolled during their second fall semester or they were not enrolled). These particular logistic 

regression equations can be used to predict the odds that a student at Otterbein will be enrolled 

during their second fall. Odds should not to be confused with the probability of retention. 

Logistic regression does not output the probability of retaining a certain student, but outputs the 

odds of being enrolled (a case, 1) versus not being enrolled (a non-case, 0)
2
. Woosley and 

Shepler indicate that a significant proportion of attrition in post-secondary institutions occurs 

during students’ first year (2011).   

Several analyses were performed. The dependent variable for all analyses was whether 

the participant was enrolled at Otterbein for their second fall semester (0 for not enrolled, 1 for 

enrolled). The independent variables used were high school grade-point average, ACT  

Composite score, and the number of math classes a participant took during high school. P-values 

of 0.15 were used to test statistical significance.   

The first analysis was hierarchical stepwise logistic regression using the original set of 

data. Hierarchical logistic regression is used when data are nested within groups or when the 

dependent variable may depend on both individual characteristics and group memberships 

(Noble & Schnelker, 2007).  Hierarchical logistic regression in Minitab 17 starts with a model 

including only the constant and one predictor. The procedure then adds in predictors after each 

step to make a completed model; predictors with p-values of greater than 0.15 were not included 

                                                 
2
 An example may help illustrate the difference between probability and odds. The probability of getting a tail two 

times in a row when flipping a coin twice is .25 or 25%. The odds of getting a tail two times in a row when flipping 

a coin twice are 3:1 (there are four different outcomes when flipping a coin two times in a row, only ONE outcome 

leaves two tails in a row, so the odds are 3:1).   
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in the complete model. The second analysis was a comparison between ACTC and SATCRM 

using the data filled in with the macro. This analysis tested to see if there was a significant 

difference between using the ACTC or the SATCRM as a predictor for retention. The third 

analysis tested whether there were significant differences in models between sex (labeled as 

“GENDER” by the admission office). This was done by splitting the data by sex (male and 

female) and running two different analyses using the variables discussed above. The fourth 

analysis was done using hierarchical stepwise logistic regression and included sex as an 

independent variable. The fifth analysis done tested interactions between the predictors: ACTC, 

HS_GPA, GENDER, and the number of math courses a participant took in high school. There 

was a final analysis which tested academic rank as an independent variable to see if there was 

significant difference between an academic rank of zero versus an academic rank of one.   

Results  

The mean ACT Score was 19.34 with a standard deviation of 2.12. The mean SAT score 

was 923.64 with a standard deviation of 85.20. The mean HS_GPA was 2.81 with a standard 

deviation of .286. The mean number of math courses taken in high school was 3.82 with a 

standard deviation of .725 (see Table 1 for summary of descriptive statistics).   

All predictors in the final step of analysis one had a p-value equal to or less than 0.15 

(See Figure 1). ACTC had the lowest p-value at 0.003. MATH_YRS had a p-value 0.105. The 

hierarchical logistic regression did not include HS_GPA in the final step. Using ACTC as a 

predictor in analysis two showed that ACTC had a p-value of 0.002 with an odds ratio of 1.23 

(See Figure 3).  Using the SATCRM score as a predictor in analysis two showed that SATCRM 

had a p-value of 0.001 with an odds ratio of 1.01 (See Figure 4). Analysis three was thrown out 

in favor of analysis four. Analysis four used GENDER as an independent variable and was not 

shown to be statistically significant (See Figure 5&6). HS_GPA was also not statistically 
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significant with a p-value of 0.250. Analysis five included interactions between the predictors 

(HS_GPA*MATH_YRS, HS_GPA*ACTC, ACTC*MATH_YRS, GENDER*HS_GPA, 

GENDER*MATH_YRS, GENDER*ACTC). No interaction terms were significant; ACTC had a 

p-value of 0.001, MATH_YRS had a p-value of 0.086, and GENDER had a p-value of 0.144 

(See Figures 7&8).The predictor ACADEMIC_RANK had a p-value of 0.846 in analysis six 

(See Figures 9&10).   

Discussion  

While the average ACT Composite score in this study of 19.338 is less than the national 

average of 20.8 (Noble, 2003), it isn’t statistically significant as the difference is less than one 

standard error (0.121).  The range for HS_GPA in this sample is [2.07, 3.58]; High School GPAs 

of 2.00, 2.50, and 3.00 are slightly better at predicting college success than ACT Composite 

scores and HS GPAs of 3.25 and 3.50 are poor at predicting college success (Noble & Sawyer, 

2002). While the majority (72.4%) of participants had a HS_GPA less than or equal to 3.00, 

HS_GPA is not seen as a statistically significant predictor. This could because of the lack of 

representation of predictors as the sample is all academic ranks of 0 or 1.   

Analysis one had p-values of less than or equal to 0.15 for all predictors in the final step, 

which showed the statistical significance of the predictors for this equation. The number of math 

courses in high school was shown to be a predictor significantly different than zero in this 

stepwise analysis. The standard error coefficient for the ACTC as a predictor in analysis two was 

0.0648 while the standard error coefficient for SATCRM as a predictor was 0.00162. The 

standard error for ACT composite scores (calculated by dividing the standard deviation by the 

square root of the sample size) was 0.128; the standard error for SATCRM is 5.14. The standard 

error coefficients for these predictors are not different by one standard error, so these predictors 

can be considered equivalent when used in this logistic regression analysis for retention rates. In 
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other words, SATCRM and ACTC scores both have the same predicting power when studying 

this sample. The only predictors of statistical significance in analysis four were ACTC score and 

MATH_YRS. The other predictors were all over 0.15. GENDER was shown to be a statistically 

significant predictor in analysis five with a p-value of 0.147. Academic rank was not statistically 

significant in analysis six because the p-value of 0.846 is greater than 0.15. Since only academic 

ranks of 0 or 1 were included in these analyses, it should be noted that it is not possible to predict 

the role that academic rank would have if the full range were included.   

The sample analyzed was a very specific pool of participants at Otterbein University and 

was not selected randomly. In skipping the randomization process, one must be careful about 

generalizing results to the greater population of Otterbein students. The sample does not reflect 

the entire population retention rate at Otterbein of about 76%. It would be beneficial to re-run 

these regression analyses on the entire population of Otterbein students.   

These results seem to be similar to results of previous research, showing statistical 

significance with ACTC score. ACTC score and MATH_YRS were seen to be statistically 

significant predictors for academic rank 0 or 1 students at Otterbein University. It should be 

noted that HS_GPA was not a statistically significant predictor in any of these analyses.  

It might be of value for further research to be done indicating which students have taken 

post-secondary level math classes that also count for college credit and comparing their retention 

rates look to students that only took high school math. It would also be interesting to look at 

either the entire population at Otterbein or a random sample of Otterbein students that would 

accurately reflect the population. I believe that would produce more accurate results in the 

regression equations that would be more applicable to future students.   
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Table One 

Descriptive Statistics   

 

PREDICTOR  MEAN  ST DEV  ST. ERROR  

ACT COMPOSITE  19.338  2.120  0.121  

SAT SCORE  923.636  85.204  5.137  

HS GPA  2.809  0.286  0.017  

MATH COURSES  3.822  0.726  0.044  
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Table Two   

ACT Composite Histogram   
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Figure One   

Analysis One: Hierarchical Stepwise  

 

Stepwise Selection of Terms 

 

Candidate terms: HS_GPA, ACT_COMP, MATH_YRS 

 

                    ----Step 1----    ----Step 2---- 

                      Coef       P      Coef       P 

Constant             -3.31             -4.22 

ACT_COMP            0.1975   0.002    0.1879   0.003 

MATH_YRS                               0.290   0.105 

 

Deviance R-Sq                2.88%             3.62% 

Deviance R-Sq(adj)           2.60%             3.07% 

AIC                         357.32            356.63 

 

α to enter = 0.15, α to remove = 0.15 

 

 

Response Information 

 

Variable             Value  Count 

REGISTERED_2ND_FALL  1        170  (Event) 

                     0        104 

                     Total    274 

 

 

Deviance Table 

 

Source       DF  Adj Dev  Adj Mean  Chi-Square  P-Value 

Regression    2   13.159     6.579       13.16    0.001 

  ACT_COMP    1    9.292     9.292        9.29    0.002 

  MATH_YRS    1    2.691     2.691        2.69    0.101 

Error       271  350.631     1.294 

Total       273  363.789 

 

 

Model Summary 

 

Deviance   Deviance 

    R-Sq  R-Sq(adj)     AIC 

   3.62%      3.07%  356.63 
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Figure 2   

Analysis One: Regression Equation   

Odds Ratios for Continuous Predictors 

 

          Odds Ratio       95% CI 

ACT_COMP      1.2067  (1.0654, 1.3667) 

MATH_YRS      1.3363  (0.9409, 1.8979) 

 

 

Regression Equation 

 

P(1)  =  exp(Y')/(1 + exp(Y')) 

 

 

Y' = -4.22 + 0.1879 ACT_COMP + 0.290 MATH_YRS 
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Figure 3  

Analysis Two: ACT Composite Score as Predictor   
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Figure 4  

Analysis Two: SAT Critical Reading & Writing Score as predictor   
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Figure 5 

Analysis Four   
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Figure 6 

Analysis Four: Regression Equation   
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Figure 7 

Analysis Five:   

Candidate terms: HS_GPA, ACT_COMP, MATH_YRS, GENDER, HS_GPA*ACT_COMP, 

HS_GPA*MATH_YRS, 

     ACT_COMP*MATH_YRS, HS_GPA*GENDER, ACT_COMP*GENDER, 

MATH_YRS*GENDER 

 

                    ----Step 1----    ----Step 2----    ----Step 3---- 

                      Coef       P      Coef       P      Coef       P 

Constant             -3.31             -4.22             -4.28 

ACT_COMP            0.1975   0.002    0.1879   0.003    0.1999   0.002 

MATH_YRS                               0.290   0.105     0.306   0.090 

GENDER                                                  -0.388   0.147 

 

Deviance R-Sq                2.88%             3.62%             4.20% 

Deviance R-Sq(adj)           2.60%             3.07%             3.38% 

AIC                         357.32            356.63            356.50 

 

α to enter = 0.15, α to remove = 0.15 

 

 

Response Information 

 

Variable             Value  Count 

REGISTERED_2ND_FALL  1        170  (Event) 

                     0        104 

                     Total    274 

 

 

Deviance Table 

 

Source       DF  Adj Dev  Adj Mean  Chi-Square  P-Value 

Regression    3   15.291     5.097       15.29    0.002 

  ACT_COMP    1   10.308    10.308       10.31    0.001 

  MATH_YRS    1    2.946     2.946        2.95    0.086 

  GENDER      1    2.132     2.132        2.13    0.144 

Error       270  348.498     1.291 

Total       273  363.789 
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Figure 8 

Analysis Five: Regression Equation   

  

 Odds Ratios for Continuous Predictors 
 

          Odds Ratio       95% CI 

ACT_COMP      1.2213  (1.0766, 1.3854) 

MATH_YRS      1.3575  (0.9529, 1.9338) 

 

 

Odds Ratios for Categorical Predictors 

 

Level A  Level B  Odds Ratio       95% CI 

GENDER 

  M      F            0.6785  (0.4017, 1.1462) 

 

Odds ratio for level A relative to level B 

 

 

Regression Equation 

 

P(1)  =  exp(Y')/(1 + exp(Y')) 

 

 

GENDER 

F       Y' = -4.277 + 0.1999 ACT_COMP + 0.3057 MATH_YRS 

 

M       Y' = -4.665 + 0.1999 ACT_COMP + 0.3057 MATH_YRS 
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Figure 9 

Analysis Six   
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Figure 10 

Analysis Six: Regression Equation   
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