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Abstract

In this note we calculate the spectrum of two-dimensional QCD. We formulate the theory with
SU(Nc) currents rather than with fermionic operators. We construct the Hamiltonian matrix in DLCQ
formulation as a function of the harmonic resolutionK and the numbers of flavorsNf and colorsNc.
The resulting numerical eigenvalue spectrum is free from trivial multi-particle states which obscured
previous results. The well-known ’t Hooft and largeNf spectra are reproduced. In the case of adjoint
fermions we present some new results. 2000 Elsevier Science B.V. All rights reserved.

PACS:11.15.-q; 11.10.Ef; 11.40.-q; 11.10.St
Keywords: SU(N) gauge field theory; Current algebra; Bosonization; Mass spectrum; Light front quantization;
Dimension 2

1. Introduction

On the way to understand the physics of strong interactions, two-dimensional QCD has
remained an interesting model ever since it has been studied by ’t Hooft [1]. It has, however,
the disadvantage of lacking dynamical (i.e., transverse) gluonic degrees of freedom.
To construct a model closer to four-dimensional QCD, adjoint rather than fundamental
fermions were built into the theory [2,3]. Also matter with a large number of flavors has
been considered [4,5]. Surprisingly, these theories are related by a universality [6]: the
massive spectrum and interactions of two-dimensional Yang–Mills theories coupled to
massless fermions in arbitrary representations depend only on the gauge group and the
level of the affine Lie algebra. The associated parameter space of two-dimensional Yang–
Mills theories with massless fermions is depicted in Fig. 1 [7].

Of particular interest in two-dimensional QCD is the transition between confinement
and screening. The ’t Hooft model is known to consist of stable mesons and has no
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Fig. 1. The parameter space of two-dimensional Yang–Mills theories with massless fermions.

confinement-screening transition. The model with adjoint fermions exhibits deconfinement
at zero fermion massm, and the string tension vanishes likeσ ∝ m at this point [8–11].
Interestingly, this theory is supersymmetric at the fermion massm2 = g2Nc , and
asymptotically supersymmetric otherwise. It has been studied extensively in the literature
[2,3,12–14]. We will focus on the massless case of this theory, where we can make use
of the universality [6], and consequently we will formulate the theory as a current algebra
problem. The Hilbert space of the problem then splits up into current sectors. This allows
for a convenient reduction of the numerical effort when solving for the spectrum of the
theory, since all single-particle states lie in the current block of the identity (bosons) or in
the adjoint current block (fermions) [6]. Because of its simpler algebraic properties, we
will limit ourselves in the present work to the bosonic spectrum. We will use the additional
parameter in the problem,λ = Nf /Nc, as a tool for interpreting the spectrum, i.e., we
will consider theories ‘on the arc’ of Fig. 1, where bothNc andNf are large. The main
emphasis will be on the adjoint case (Nc=Nf ). The goal is to identify the single-particle
states of the theories and to be able to connect to results anticipated from the asymptotic
theory, e.g., the expected multi-Regge trajectory structure in the adjoint case [3].

A very convenient way to formulate two-dimensional QCD is to quantize the system
on the light-cone [1]. Usually the light-cone gauge,A+ = 0, is used. This approach
gives a very complete picture and includes non-perturbative effects, if an appropriate
regularization for the quark self-energy is used [15]. Discretized Light Cone Quantization
(DLCQ) [16,17] is then a method especially suited to solve numerically for the spectrum of
low dimensional theories. The momenta are discretized by imposing boundary conditions
on the fields. The typical DLCQ program is to construct a finite-dimensional Hamiltonian
matrix characterized by the harmonic resolutionK. The spectrum is obtained by
diagonalizing this matrix numerically for larger and largerK, and eventually extrapolating
to the continuum limit,K→∞.

The latest largeNc analysis of adjoint QCD2 [12] revealed several single-particle states
and, most interestingly, a continuum of states at precisely four times the mass (squared)
of the lowest fermion state. Despite this remarkable structure, the insight gained from this
finding is rather small. It is clearly not a signature for screening versus confinement. Both
in a confining and a screening theory, one would expect a continuum of states at 4m2 of
a single-particle state, although from very different mechanisms. More information about
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the spectrum is thus needed to understand things like the deconfinement mechanism or the
statistics of single-particle states.

The paper is organized as follows. In the following section we review two-dimensional
QCD with massless fermions. Section 3 deals with analytic considerations. Namely,
we show that it is possible to calculate two eigenvalues of the theory from the outset.
In Section 4.1 we construct the Hamiltonian matrix for any harmonic resolutionK and
arbitrary (i.e., in principle finite)Nf andNc. We will, however,in praxi only use the
largeN limit of this result. Section 4 details the numerical results. We will focus on the
adjoint case, but also consider the ’t Hooft limit and the largeNf limit to present a coherent
picture of two-dimensional QCD. A discussion of the results follows.

2. QCD in two dimensions

We want to compute the massive spectrum ofSU(Nc) Yang–Mills gauge fields coupled
to massless adjoint fermions in two dimensions. Due to the universality in these gauge
theories [6], this is equivalent to solving for the massive spectrum ofNf = Nc flavors of
massless fundamental Dirac fermions coupled to the gauge fields. The latter case turns
out to be more general, in the sense that we have an additional continuous parameter,
λ :=Nf /Nc, in the theory. The case of adjoint gauged fermions is recovered when setting
λ to unity. Without loss of generality we consider only the Lagrangian of the fundamental
theory

L= Tr

[
− 1

4g2FµνF
µν + i

Nf∑
a=1

SΨaγµDµΨa
]
, (1)

whereΨa = 2−1/4
(
ψa
χa

)
, with ψa andχa carrying color indices, which we suppressed. The

field strength isFµν = ∂µAν − ∂νAµ + i[Aµ,Aν], and the covariant derivative is defined
asDµ = ∂µ+ iAµ. We work in the light-cone gaugeA+ = 0 and use the convenient Dirac
basisγ 0= σ1, γ 1=−iσ2. The Lagrangian then becomes

L= Tr

[
1

2g2
(∂−A+)2+ iψ†∂+ψ + iχ†∂−χ −A+J

]
, (2)

with the currentJij = ψ†
iaψaj . We can integrate out the (non-dynamical) componentA+

of the gauge field and obtain

L= Tr

[
iψ†∂+ψ + iχ†∂−χ − g

2

2
J

1

∂2−
J

]
. (3)

It is obvious that the left-moversχ decouple. Noting the simple expression of the
interaction in terms of the currents, it is natural to bosonize the theory [18]. We follow
Ref. [5] to derive the momentum operators. The bosonized action of colored flavored
fermions is

S0= SWZW
(Nf )

(g)+ SWZW
(Nc)

(h)+ 1

2

∫
d2x ∂µφ ∂

µφ, (4)
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whereg ∈ SU(Nc), h ∈ SU(Nf ), exp{i
√

4π
NcNf

φ} ∈ UB(1), and the Wess–Zumino–Witten

action is

SWZW
(k) (g)= k

8π

∫
Σ

d2x Tr
(
∂µg∂

µg−1)
+ k

12π

∫
B

d3y εijk Tr
(
g−1∂ig

)(
g−1∂jg

)(
g−1∂kg

)
, (5)

whereB is the solid sphere whose boundaryΣ represents space–time. The action of the
theory is then

S = S0+ g
2

2

∫
d2x J

1

∂2−
J, (6)

with the currentsJ = ik
2π g∂−g

−1 generating a levelNf affine SU(Nc) Kac–Moody
algebra. The associated energy-stress tensorT µν yields the momentum operators

P+ = T ++ = π

Nc +Nf

∞∫
−∞

dx− :Jij (x
−)Jji(x−) : , (7)

P− = T +− =−g
2

2

∞∫
−∞

dx− :Jij (x−)
1

∂2−
Jji(x

−) : . (8)

To obtain the mass eigenvaluesMn we have to solve the eigenvalue problem

2P+P−|ψ〉 =M2
n |ψ〉, (9)

which is equivalent to diagonalizing the operatorP−, sinceP+ is already diagonal.
To discretize the system, we impose periodic boundary conditions of length 2L on the
currents,Jij (−L)= Jij (+L), and expand them into a discrete series of modes

Jij (x
−)= 1√

2L

K∑
n=−K

Jij (n)e
−ix−(2πn)/L, (10)

with

Jij (n)|0〉 = 0 ∀n > 0. (11)

The cutoffK ≡ P+L/(2π) controls the coarseness of the momentum-space discretization.
The continuum limit is obtained by sendingK to infinity. The modes of the currents obey
the algebra[

Jij (n), Ji′j ′(n
′)
]= nNf(δij ′δi′j − 1

Nc
δij δi′j ′

)
δn−n′

+ δij ′Ji′j (n+ n′)− δi′j Jij ′ (n+ n′). (12)

The momentum generators
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P+ =
(

2π

L

)
1

Nc +Nf
K∑
n=1

Jij (−n)Jji(n), (13)

P− = g̃ 2

2π

K∑
n=1

1

n2
Jij (−n)Jji(n), (14)

are finite-dimensional matrices on the Hilbert space constructed by acting with the current
operators on the vacuum defined in Eq. (11). For convenience we introduced the scaled
couplingg̃ 2= g2L/(2π). Note that the box lengthL drops out of the eigenvalue problem,
Eq. (9). At largeNc we expect the Fock basis to consist of single-trace states

1

Nsc
Tr
[
J (−n1)J (−n2) · · ·J (−ns)

]|0〉.
We note that a cyclic permutation of the currents will reproduce these states only up to
states with a lower number of currents. The number of currents is not conserved.

3. Analytic considerations

The discretization of momenta via the DLCQ procedure puts severe constraints on the
possible Fock states. It turns out that they allow for thea priori calculation of two of the
eigenvalues. At harmonic resolutionK the states

|K〉 = Tr
[{J (−1)}K]|0〉, (15)

|K − 1〉 = Tr
[{J (−1)}K−2J (−2)

]|0〉 (16)

are unique and haveK andK − 1 currents, respectively. The sectors with less thanK − 1
currents contain more than one state, e.g.,

|K − 2〉1= Tr
[{J (−1)}K−3J (−3)

]|0〉, (17)

|K − 2〉s = Tr
[{J (−1)}K−2−sJ (−2){J (−1)}s−2J (−2)

]|0〉, 26 s 6 K
2
. (18)

It is relatively straightforward to derive the expressions

P−|K〉 = g̃ 2

2π
(Nc +Nf )K|K〉 +O

(|K − 1〉), (19)

P−|K − 1〉 = g̃ 2

2π
(Nc +Nf )

(
K − 3

2

)
|K − 1〉 +O(|K − 2〉), (20)

P−|K − 2〉i = 0+O(|K − 2〉), (21)

whereO(|p〉) are terms involving states withp or less currents. Let the dimension
of the discrete Fock space bed and defineµ1 := (g̃ 2/(2π))(Nc + Nf )K and µ2 :=
(g̃ 2/(2π))(Nc +Nf )(K − 3/2). Then the structure of the Hamiltonian matrix is

P− =
A 0

B
µ2 0
C µ1

 . (22)
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The matricesA andB have dimensions(d − 2)× (d − 2) and 2× (d − 2), respectively
andC is a real number. Clearly,µ1 andµ2 are two eigenvalues ofP−. The eigenvalues of
the mass squared operator are then

M2
1 =

g2Nc

π
(1+ λ)K2 and M2

2 =
g2Nc

π
(1+ λ)K

(
K − 3

2

)
. (23)

These eigenvalues seem to diverge in the continuum limit, which would render them
physically irrelevant. However, one can show that the eigenvaluesM2

i (K) lie in different
Z2 sectors for even and oddK and therefore cannot be connected. They rather mark the
appearance of new states in the spectrum, as we will see.

4. Numerical calculations

4.1. The Hamiltonian

In this section we address to calculate the eigenvalues of QCD2 by solving the eigenvalue
problem, Eq. (9), numerically. Since the operatorP+ is already diagonal, we have to
construct the action of the HamiltonianP− on a basis state.1 Using the largeNc limit
implies that the basis states be of the form Tr[J1 · · ·Jb]|0〉, i.e., single-trace states. The
current operators are subject to the Kac–Moody algebra, Eq. (12). Annihilation operators
may thus be produced bycommutingoperators. The main obstacle for the calculations is
to find a scheme to organize the terms in a convenient way. We obtain such a scheme by
separating terms containing annihilation operators from those that do not. In the definition

[A,B] := dA,Be + bA,Bc, (24)

dA,Be denotes the part of a commutator which consists solely of creation operators.
Its complementbA,Bc contains annihilation operators. It is possible to write down
an expression forP− which involves only commutators of the first type and creation
operators. It reads

P−J1J2 · · ·Jb|0〉 =
n∑
p=1

b∑
k1<k2<···<kp

J1 · · ·Jk1−1Jk1+1 · · ·Jk2−1Jk2+1 · · ·Jkp−1

× db· · · bP−, Jk1c, Jk2c, . . . , JkpeJkp+1 · · ·Jb|0〉. (25)

The commutators in this expression, and thus the Hamiltonian matrix, are linear inNf

by construction. To construct the Hamiltonian matrix, we have to evaluate all 2b − 1
commutators. In the worst case scenario we would have an exponentially growing number
of terms ((3/2)

∑p
p=1 22(p−1)p!b!/(b− p)!) in the Hamiltonian, due to the(3/2)22(p−1)

terms in a commutator involvingp currents. Fortunately, the number of terms of leading
power inNc grows only quadratically, like(2b − 1)b. We developed a computer code
to evaluate Eq. (25) symbolically. This task exceeds typical workstation capabilities at

1 A continuum version of the first step of this DLCQ calculation can be found in Ref. [5].
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b > 7. It is however possible to deduce the expression for arbitraryb, because a repeated
pattern evolves. In the largeNc limit the action ofP− on a state|b;n1, . . . , nb〉 :=

1
Nbc
J
j1
j2
(n1) · · ·J jbj1 (nb)|0〉 with b currents is then

P−|b;n1, . . . , nb〉

= − g̃
2Nc

2π

b∑
i=1

(
ni−1∑
m=1

1

(m− ni)2 −
ni−1∑
m=1

1

m2

)
|b+ 1;n1, n2, . . . , ni −m,m, . . . , nb〉

+ g̃
2Nc

2π

b∑
i=1

(
λ

ni
+
ni−1∑
m=1

1

m2

)
|b;n1, n2, . . . , nb〉

+ g̃
2Nc

2π

b−1∑
i=1

(
ni+1−1∑
m=0

1

(m+ ni)2 −
ni+1−1∑
m=1

1

m2

)
×|b;n1, n2, . . . , ni +m,ni+1−m, . . . , nb〉

+ g̃
2Nc

2π

(
nb−1∑
m=0

1

(m+ n1)2
−
nb−1∑
m=1

1

m2

)
|b;n2, . . . , nb−1, nb −m,n1+m〉

+λg̃
2Nc

2π

b−2∑
j=1

{
(−)j

b−j∑
i=1

[
1

(
∑j+i
q=i nq )2

− 1

(
∑j+i
q=i+1nq)

2

]
ni+j

×
∣∣∣∣∣b− j;n1, . . . , ni−1,

j+i∑
q=i

nq, nj+i+1, . . . , nb

〉

+ (−)j−1
[

1

(n1+∑b
q=b−j+1nq)

2
− 1

(
∑b
q=b−j+1nq)

2

]
nb

×
∣∣∣∣∣b− j;n2, . . . , nb−j , n1+

b∑
q=b−j+1

nq

〉

+ (−)j
j−1∑
i=1

[
1

(n1+∑b
q=b−i+1nq)

2
− 1

(
∑b
q=b−i+1nq)

2

]
nb

×
[∣∣∣∣∣b− j ;nj−i+1, nj−i+2, . . . , nb−i−1,

j−i∑
q=1

nq +
b∑

q=b−i
nq

〉

−
∣∣∣∣∣b− j ;nj−i+2, nj−i+3, . . . , nb−i ,

j−i+1∑
q=1

nq +
b∑

q=b−i+1

nq

〉]}

+ g̃
2Nc

2π

b−2∑
j=1

{
(−)j

b−j−1∑
i=1

ni+j+1−1∑
m=0

(
1

(m+∑i+j
q=i nq)2

− 1

(m+∑i+j
q=i+1nq)

2

)

×
∣∣∣∣∣b− j ;n1, n2, . . . ,

i+j∑
q=i

nq +m,ni+j+1−m,ni+j+2, . . . , nb

〉
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+ (−)j
(
nb−1∑
m=0

1

(m+ n1)2
−
nb−1∑
m=1

1

m2

)

×
∣∣∣∣∣b− j ;nj+2, . . . , nb−1, nb −m,

j+1∑
q=1

nq +m
〉

+ (−)j−1

(
nb−1∑
m=0

1

(m+ n1)2
−
nb−1∑
m=1

1

m2

)

×
∣∣∣∣∣b− j ;nj+1, . . . , nb−1,

j∑
q=1

nq + nb
〉}
. (26)

Note that only the terms in lines two and six of this result containNf . These terms will be
absent in the ’t Hooft limit (Nf /Nc→ 0) and will be dominant in the largeNf limit.

4.2. Numerical results

We are solving the eigenvalue problem, Eq. (9), numerically to obtain the mass spectrum.
Recall that we have two parameters at our disposal to study the spectra. One is the harmonic
resolutionK, which we are supposed to send to infinity. The other is the ratio of the
numbers of flavors and colors,λ = Nf /Nc , of the fermions in the theory. The most
prominent cases areλ= 0,1,∞, namely, the ’t Hooft limit, adjoint fermions, and the large
Nf limit. Note that also the unphysical parameterK might give insight into the spectrum,
e.g., the discovery of continuum states via their characteristicK dependence in Ref. [12].

The advantages of formulating the problem withSU(N) currents rather than with
fermionic degrees of freedom are twofold. For one, the much smaller basis allows for a
larger resolutionK and thus for more accurate results. We will also see the structure of the
spectrum much clearer, in the sense that many, if not all, of the uninteresting multi-particle
states are absent. Secondly, we are able to study the behavior of the spectrum as we couple
the gauge field to different forms of matter by varying the parameterNf /Nc, which is an
algebraic variable in the present approach. This might be used a tool to interpret spectra.

Performing the numerical calculation, we obtain exactly the same eigenvalues in
the adjoint case as in previous works [14] withanti-periodic boundary conditions for
the fermions. The number of states grows exponentially with the harmonic resolution,
cf. Table 1. AtK = 12 we are diagonalizing a Hamiltonian of dimensions2 350× 350,
whereas in the fermionic approach one would have to operate on a Fock space with 4338
states to obtain the same accuracy. To further reduce the computational effort, we can
use theZ2 symmetry of the Hamiltonian which is invariant under the transformation

2 It is not cleara priori how to construct a Fock basis for the current operators. A naive expectation is that
single-trace states modulo cyclic permutations provide such a basis. We convinced ourselves that this is actually
the correct choice by explicitly performing a largeNc Gram–Schmidt orthonormalization for smallK on these
states.
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Table 1
Number of basis states as a function of the harmonic resolutionK

K 2 3 4 5 6 7 8 9 10 11 12 13 14

States 1 2 4 6 12 18 34 58 106 186 350 6301180

T Jij (n) = −Jij (n). It is straightforward to convince one-self that the action of this
operator on a state withb currents is

T |b;n1, n2, . . . , nb〉 = (−)b
2b−2∑
i=0

∣∣pi;n1, Ti(nb, nb−1, . . . , n2)
〉
, (27)

where theTi consist ofpi partial sums of theb− 1 momenta, in the sense thati runs over
all possibilities to place 0,1, . . . , b − 2 commas between the momenta while summing
those momenta which are not separated by a comma, e.g.,

T |4;n1, n2, n3, n4〉 = |4;n1, n4, n3, n2〉 + |3;n1, n4+ n3, n2〉
+ |3;n1, n4, n3+ n2〉 + |2;n1, n4+ n3+ n2〉. (28)

In order not to complicate the construction of the Hamiltonian, we determine theZ2 parity
of an eigenstatea posterioriby calculating the expectation value of the operatorT in this
state. The separation of theZ2 odd and even eigenfunctions is useful when interpreting the
results, because it reduces the density of eigenvalues to roughly a half.

4.3. The ’t Hooft limit

To test the consistency of our approach, we compare to the well-known results in the
largeNc and the largeNf limit. We find complete agreement. First let us consider the
largeNc (or ’t Hooft) limit, where we should recover the results of the ’t Hooft model [1].
The spectrum of largeNc QCD in two dimensions with massless fundamental fermions
asymptotically has the formM2 = π2n for large integern, where the mass squared is in
unitsg2Nc/π . We find that atK = 14 the lowest ten single-particle states have masses3

M2= 5.88,14.11,23.04,32.27,41.68,51.24,60.93,70.76,80.97,90.90, (29)

which is in very good agreement with ’t Hooft’s numerical solution [1]. The actual
spectrum, Fig. 2, is a mixture of single- and multi-particle states. The multi-particle states
decouple completely from the single-particle states. They appear here, because we do not
use an orthonormal basis. We have performed a calculation with an orthonormal set of
states up toK = 6 and found that then only single-particle states are present. We were able
to identify all multi-particle states as composites of two or more single-particle states. The
massesM2

mp of multi-particle states is given by [12]

3 We performed the continuum limit here and in the sequel by fitting the data to a polynomial of second degree
in 1/K .
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(a) (b)

Fig. 2. Spectra of the ’t Hooft limit in theZ2 even (a) and odd (b) sectors. Solid lines connect
associated eigenvalues asK varies. Short dashed lines connect analytically calculable eigenvalues.
Long dashed lines are extrapolations towards the continuum limit. Masses are in unitsg2Nc/π .

M2
mp(K)

K
= M

2
p1
(n)

n
+ M

2
p2
(K − n)
K − n , (30)

whereM2
pi
(n) are the masses of single-particle states at harmonic resolutionn. These

masses are exactly reproduced in the spectrum. This identification in turn made it possible
to detect the single-particle states hidden amongst the multi-particle states. Surprisingly,
the eigenfunctions have no significant structure, apart from the special form of the lowest
state in eachZ2 sector. In particular, we were unable to distinguish single- from multi-
particle wavefunctions by their shapes.

4.4. Adjoint fermions

Consider now the adjoint spectrum, Fig. 3. If we look at the eigenvalue trajectories (mass
squared as a function ofK), the structure of the spectrum looks similar to the ’t Hooft case.
We see immediately three single-particle candidates which qualify by their straight, smooth
trajectories. In the continuum limit they have the eigenvalues

M2
B1
= 10.84, M2

B2
= 25.73, M2

B3
= 45.66. (31)

The expectation for the asymptotic solution is here [3]

M2
n1,n2,...,nk

= 2π2(n1+ n2+ · · · + nk), n ∈ 2Z, (32)

again in unitsg2Nc/π . The single-particle masses appear to be at roughly twice the values
of the ’t Hooft limit, whereas the low-lying ‘multi-particle’4 masses stay at more or

4 We use quotation marks here and in the following because it is nota priori clear that these states are indeed
multi-particle states.
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(a) (b)

Fig. 3. Spectra of the theory with adjoint fermions in theZ2 even (a) and odd (b) sectors. Solid
lines connect associated eigenvalues asK varies. Short dashed lines connect analytically calculable
eigenvalues. Dashed lines are extrapolations towards the continuum limit. Masses are in units
g2Nc/π . The dash-dotted trajectory is the analog of the third single-particle state in the ’t Hooft
limit.

less their ’t Hooft values. The crucial difference between the spectra is that the ‘multi-
particle’ eigenvalues of the adjoint case coincide only approximately with the values
from the mass formula, Eq. (30). They are systematically lower than expected. As such,
these states appear to be looselyboundcomposites, i.e., they have to be interpreted as
single-particle states, at least at finiteK. We can see that these states are a vital part
of the spectrum by comparing the eigenvalues atM2 ' 32, K = 13 in Fig. 2(a) with
those of Fig. 3(a) atM2 ' 42, K = 12. In the latter case the eigenvalues repel each
other, leading to a deformation of the eigenvalue trajectory of the (conjectured) single-
particle stateB3. This means that the ‘multi-particle’ states are interacting! By varying
the parameterλ, we were able to follow this deformation. AsNf grows, the lowest
multi-particle states of the ’t Hooft spectrum ‘move through’ the single-particle state
with mass squaredM2 = 23.04 in the ’t Hooft limit, and produce these deformations in
a trajectory. In the ’t Hooft limit, Fig. 2(a), we see no distortion of the single-particle
trajectory though the corresponding eigenvalue is almost degenerate with a (decoupled)
multi-particle state.5

The question arises, whether these loosely bound states become multi-particle states and
decouple in the continuum limit in the adjoint spectrum. For the states betweenM2= 20
andM2= 40 in theZ2 even sector, the answer is certainly yes. We performed a fit to the
data finding that the eigenvalues converge towards a single point, namely the two particle
continuum threshold atM2= 22.85= 4M2

F1
, i.e., twice the mass of the lowest fermionic

5 The same deformation occurs in the fermionic spectrum, namely in the trajectory of the secondZ2 even
single-particle state of Ref. [12].
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state [12]. The deviations from the mass formula, Eq. (30), vanishes faster than 1/Kβ ,
whereβ > 2.

The deformation of a trajectory renders it questionable if the associated state is really
a single-particle state. AsK grows there will be more and more ‘multi-particle’ states
to distort the trajectory. On the other hand, the ‘multi-particle’ sector will interact less
and less asK increases. The number of (low-lying) ‘multi-particle’ states grows linearly
with K. If we can take the deviation of the ‘multi-particle’ states from the mass formula
(proportional to 1/Kβ ) as a measure of the coupling, we have to conclude that the single-
particle trajectory will be less and less distorted and thus a true single-particle state will
emerge asK →∞. Although the first two points of the trajectory atK = 4 andK = 5
are multi-particle states with fermionic constituents,6 we feel quite safe about the single
particle nature of this state, because we find that the same situation occurs in the case of the
lowestZ2 odd trajectory, which represents undoubtedly a single-particle state, due to its
complete isolation in the spectrum. To check whether all ’t Hooft mesons become adjoint
single-particle states, we followed the next twoZ2 even single-particle trajectories of the
’t Hooft spectrum as we variedλ in small steps. One is shown as the dashed-dotted line
in Fig. 3 just above the state converging toM2 = 45.99. Their irregular shape makes it
unlikely that they are single-particle states.

The eigenfunctions and the probability distributions in parton number were helpful to
identify states at differentK in the fermionic formulation of the theory [2,12]. Here,
with a non-conserved parton number, these quantities will be of limited usefulness. In
the fermionic formulation the single-particle states have a high probability to be states of
a definite parton number [2]. In the present work, we find this behavior only for the lowest
state in theZ2 even sector, cf. Fig. 4(a). This state is a two current state to a very good
approximation (98.4%). The next-to-lowest state is an almost perfect mixture of two and
three parton states, although this ratio varies withK. We definitely cannot use information
about the probability distributions to distinguish states: if we have a close encounter of
two eigenvalues in the spectrum, one of which is presumably a single- and the other one
a multi-particle state, we find that the probability distributions are almost identical. For
the higher states significant structures in the parton probability distributions are missing
altogether. Concerning the wavefunctions, we find that the lowest eigenstate is a single
peak in the two-particle sector, cf. Fig. 4(a). We find no obvious structure in other states
that could give a hint of how to construct solutions of the theory analytically. However,
there might be hints of an additional structure in the eigenfunctions: we found several
wavefunctions which have a noticeable amplitude drop at the boundaries of parton number
sectors. As an example, consider the drop of the wavefunctions of the ‘single-particle’
states (B1,B2,B3) at the boundaries of the 2,3, and 4 current sectors, respectively in
Fig. 4(b). The ‘multi-particle’ state (M2 = 22.03) does not exhibit such a behavior. In
principle, the wavefunction should factorize if it is a continuum state consisting of two non-
interacting bound states. Disentangling wavefunctions along these lines has been attempted

6 One state consists ofM2
F1
(K = 5/2) = 5 andM2

F2
(K = 5/2) = 12.5, the other of the first mass plus

M2
F2
(K = 3/2)= 9.
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(a)

(b)

Fig. 4. Adjoint fermions: (a) The current number distribution functions of selected states at different
harmonic resolutionK . The lower three rows are distributions of (conjectured) single-particle states.
The state in the top row is not present atK = 11. (b) Wavefunctions of selected eigenstates atK = 14
as functions of the basis state number divided by the total number of states (1180). The dashed lines
mark points of changing parton content (number of currents in parenthesis).
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in Ref. [23]; here, however, this task seems intractable, due to the non-conserved parton
number.

4.5. LargeNf limit and intermediate cases

When going over to the largeNf limit, λ→∞, the operatorP−, Eq. (26), has a
dominant kinetic term. In the two-particle truncation the spectrum is purely kinematical.
In the full theory a residual interaction is present. In the spectrum, Fig. 5(a), we see a
continuum of states starting atM2= 4g2Nf /π . The only particle in the spectrum is thus
a meson with massM2

M = g2Nf /π . This is in full agreement with results from analytic
calculations [7]. TheZ2 odd sector looks similar, with the continuum starting atM2= 9=
32M2

M . The single-particle state is absent in our calculations due to the tracelessness of the
currents, i.e., the absence of the one current state.

Let us look at the eigenvalues as a function ofNf /Nc . Fig. 5(b) shows the first7

calculation of the spectrum of two-dimensional Yang–Mills theories as a function of the
continuous parameterNf /Nc. We see that the (low-lying) trajectories are linear, as is
expected from the analytic calculations in Section 3. The parameterNf actually plays
a role similar to that of a mass term in the ’t Hooft model [20]. Indeed, the curves obtained
by taking the continuum limit of the single-particle trajectories in Fig. 5(b) look very
similar to results of massive two-dimensional QCD [22]. Other DLCQ calculations of two-
dimensional massive QCD [23,24] were performed at finiteNc. In particular, it was shown
in Ref. [23] that the spectrum of massive QCD in two dimensions is well described by the

(a) (b)

Fig. 5. Left (a): Spectrum of theZ2 even sector in largeNf limit. Note that masses are in units

g2Nf /π . The dashed line is the extrapolation of the lowest eigenvalue towards the continuum. Right

(b): Mass squared eigenvalues as functions ofλ=Nf /Nc . Masses are in unitsg2Nc/π .

7 M. Engelhardt [19] presented a truncated version of this calculation.
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Table 2
Eigenvalues in the adjoint case, the ’t Hooft limit and the largeNf limit. B1 andB2 are the lowest
lying single particle states in theZ2 even and odd sectors, respectively. The eigenvalue in the large
Nf limit is actually the continuum threshold. Note that the masses are given in unitsg2Nc/π in the

first two cases and in unitsg2Nf /π in the third

Nc =Nf Nf /Nc→ 0 Nf /Nc→∞
K M2

B1
M2
B2

M2
B1

M2
B2

M2
cont.

3 9.0000 18.0000 4.5000 9.0000 4.5000
4 9.4910 20.0000 4.7924 10.0000 4.0000
5 9.7815 21.2117 4.9835 10.6803 4.1666
6 9.9710 22.0078 5.1179 11.1724 4.0000
7 10.1034 22.5680 5.2176 11.5432 4.0888
8 10.2004 22.9811 5.2944 11.8326 4.0000
9 10.2742 23.2966 5.3553 12.0646 4.0500
10 10.3321 23.5446 5.4048 12.2545 4.0000
11 10.3784 23.7440 5.4458 12.4129 4.0333
12 10.4163 23.9074 5.4804 12.5469 4.0000
13 10.4478 24.0435 5.5099 12.6617 4.0238
14 10.4743 24.1583 5.5353 12.7612 4.0000

∞ 10.84 25.73 5.88 14.11 4.00

largeNc approximation. Deviations from the largeNc behavior, found typically at small
fermion massesm where the relevant couplingg2Nc/m

2 is strong, might just be artifacts
of the DLCQ approach. This is in line with results of Ref. [13], showing that also in adjoint
QCD in two dimensions the 1/Nc corrections are very small; a fact that still awaits proper
explanation.

We see a lot of level crossings in Fig. 5(b). The fact that the trajectories do not intersect
is a finiteK effect. We note that the plot shows a smooth behavior atλ= 1. There is no hint
that the adjoint case could be a special point in the parameter space. The eigenfunctions in
the largeNf limit look very different than those found in the adjoint and the ’t Hooft case.
Typically, the amplitude vanishes, except for a few delta-like peaks, reflecting the fact that
the spectrum of this theory consists of continuum states of non-interacting mesons. For
comparison with other work, we list the eigenvalues obtained in the numerical calculations
in the ’t Hooft limit, with adjoint fermions and in the largeNf limit in Table 2.

5. Summary and discussion

In this note we studied two-dimensional QCD usingSU(Nc) currents as basic degrees of
freedom. This enabled us to calculate the Hamiltonian matrix and the spectrum of any two-
dimensionalSU(Nc) gauge theory coupled to an arbitrary number of fermions. Working
in the DLCQ framework, all relevant quantities become functions of the parameter
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λ = Nf /Nc and of the harmonic resolutionK. We constructed the Hamiltonian matrix

explicitly in the Fock basis of single-trace states.

We reproduced all known results in theλ parameter space: in the ’t Hooft limit (λ→ 0)

we obtained the well-known linear spectrum, in the adjoint case we find exactly the

eigenvalues of previous works [2,12,14], and we identified the single meson of the large

Nf limit. Moreover, in the case of adjoint fermions we were able to confirm the single-

particle nature of the lowestZ2 odd boson, which was hidden in Ref. [12] among (trivial)

multi-particle states which are absent in our calculation. We provided evidence for the

single-particle nature of the bosonB3 atM2= 45.99, which makes the existence of other

single-particle states above the continuum threshold atM2 = 4M2
F1

very likely. We were

able to explain the deformations in the trajectories of the eigenvalues as repulsions of

eigenvalues. Unfortunately, the amount of remaining ‘multi-particle’ states in the spectrum

makes it impossible to decide whether or not the identified single-particle states form an

infinite Regge trajectory, or if even a multi-Regge structure exists, as was suggested in

Ref. [21]. What we were able to do is to eliminate all states from the list of single-particle

candidates which do not appear in our calculations, but in the bosonic sectors of previous

works. By construction, our approach containsall single-particle states [6].

In Ref. [12] it was suggested the massless limit is reached only in the continuum

limit K →∞. We work in a manifestly massless approach and obtain exactly the same

eigenvalues for allK. It would be very interesting to repeat the calculation of Ref. [12] for

finite m, as was done with different motivation in Ref. [14]. With our results at hand,

one can focus on a much smaller set of single-particle candidates, and see how these

states develop as the mass is turned on. Our guess is that this transition is continuous.

An interesting related question is how to distinguish screening from confinement when

only the mass spectrum is known.

We operate at higher numerical precision than previous work. This allowed us to prove

numerically that the continuum threshold found in Ref. [12] is indeed exactly at four times

the mass squared of the lightest fermion. We note however that the interpretation of the

continuum states is not completely clear. We find that the deviation of their masses from

the expected free many-body masses, Eq. (30), vanishes faster than 1/K2 as we go towards

the continuum. If these states form a continuum at exactly the expected threshold, one has

to conclude that they decouple completely from the single-particle states and that their

coupling is an artifact of the finite resolutionK.

To summarize, we presented a refined and quite coherent picture of two-dimensional

QCD by using a new computational tool. We hope that this approach will prove powerful

and that it will yield new qualitative insight, too. We mainly focused on quantitative

improvements in the present work. We hope that this work will provide sufficient input

for future enterprises to understand this theory, which shares some of the key features of

full QCD, much better.
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